Suppr超能文献

Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): binaural 2-deoxyglucose patterns.

作者信息

Caird D, Scheich H, Klinke R

机构信息

Zentrum der Physiologie, Frankfurt am Main, Federal Republic of Germany.

出版信息

J Comp Physiol A. 1991 Jan;168(1):13-26. doi: 10.1007/BF00217100.

Abstract

Unilaterally deafened (cochlear destruction) gerbils were exposed to white noise after injection of 14-C-2-deoxyglucose. The labelling patterns were compared to those of unstimulated operated animals, noise stimulated control animals and bilaterally ear plugged animals. Serial transverse, horizontal and tangential autoradiographs through the cortex were analysed. In lesioned animals, labelling was strongly reduced on the side contralateral to the lesion in the high frequency regions of A1 and the anterior auditory field (AAF). We assume that these regions correspond to the high frequency EI cell areas. Fine banding could be seen superimposed on this pattern in transverse and tangential sections. We suggest that this may be due to alternating strips of EI and EE cells orthogonal to iso-frequency contours. In the low frequency regions of A1 and AAF, labelling asymmetries were also present, but were less pronounced. We assume that these effects are due to low frequency EE cells. In sub-cortical structures, labelling was reduced in the inferior colliculus and ventral part of the medial geniculate body contralateral to the lesioned ear, but no labelling pattern was visible. We presume that the spatial separation of EE and EI inputs to these structures is not marked enough to allow labelling patterns to be seen. In the superior olivary complex, labelling was reduced on the side contralateral to the lesioned ear in the medial dendritic field of the medial superior olivary nucleus and in the nucleus of the trapezoid body. Ipsilateral to the lesioned ear, labelling was reduced in the lateral dendritic field of the medial superior olive.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验