Wittmer J P, Johner A, Cavallo A, Beckrich P, Crevel F, Baschnagel J
Institut Charles Sadron, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France.
Eur Phys J E Soft Matter. 2010 Mar;31(3):229-37. doi: 10.1140/epje/i2010-10571-9. Epub 2010 Mar 9.
Following Flory's ideality hypothesis, the chemical potential of a test chain of length n immersed into a dense solution of chemically identical polymers of length distribution P(N) is extensive in n . We argue that an additional contribution deltamu(c)(n) approximately +1/rho (sqrt[n]) arises (rho being the monomer density) for all P(N) if n "
根据弗洛里理想性假设,长度为(n)的测试链浸入长度分布为(P(N))的化学性质相同的聚合物浓溶液中的化学势在(n)上是广延量。我们认为,如果(n\ll\langle N\rangle)((\rho)为单体密度),对于所有的(P(N))会出现一个额外贡献(\Delta\mu_c(n)\approx +\frac{1}{\rho\sqrt{n}}),这可追溯到溶液的整体不可压缩性导致单体之间的长程排斥。聚焦于弗洛里分布的熔体,对于(n\ll\langle N\rangle),我们得到(\Delta\mu_c(n)\approx\frac{1 - \frac{2n}{\langle N\rangle}}{\rho\sqrt{n}}),因此,如果(n)与浴的典型长度(\langle N\rangle)相近,则(\Delta\rho_c(n)\approx -\frac{1}{\rho\sqrt{n}})。对于单分散溶液也得到了类似结果。我们通过分析键涨落模型的蒙特卡罗模拟生成的线性平衡聚合物的退火长度分布(P(N)),对微扰计算进行了数值检验。正如所预测的,例如,我们发现分布的所有矩(p)的非指数性参数(K(p)=1 - \frac{\langle N^p\rangle}{\langle N\rangle^p})以(K(p)\approx\frac{1}{\sqrt{\langle N\rangle}})衰减。