Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
Chemphyschem. 2010 Apr 26;11(6):1297-306. doi: 10.1002/cphc.200901007.
The regulatory Ni-Fe hydrogenase (RH) from the H(2)-oxidizing bacterium Ralstonia eutropha functions as an oxygen-resistant hydrogen sensor, which is composed of the large, active-site-containing HoxC subunit and the small subunit HoxB carrying Fe-S clusters. In vivo, the HoxBC subunits form a dimer designated as RH(wt). The RH(wt) protein transmits its signals to the histidine protein kinase HoxJ, which itself forms a homotetramer and a stable complex with RH(wt) (RH(wt)-HoxJ(wt)), located in the cytoplasm. In this study, we used X-ray absorption (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared (FTIR) spectroscopy to investigate the impact of various complexes between RH and HoxJ on the structural and electronic properties of the Ni-Fe active site and the Fe-S clusters. Aside from the RH(wt) protein and the RH(wt)-HoxJ(wt) complex, we investigated the RH(stop) protein, which consists of only one HoxB and HoxC unit due to the missing C-terminus of HoxB, as well as RH(wt)-HoxJ(Deltakinase), in which the histidine protein kinase lacks the transmitter domain. All constructs reacted with H(2), leading to the formation of the EPR-detectable Ni(III)-C state of the active site and to the reduction of Fe-S clusters detectable by XAS, thus corroborating that H(2) cleavage is independent of the presence of the HoxJ protein. In RH(stop), presumably one Fe-S cluster was lost during the preparation procedure. The coordination of the active site Ni in RH(stop) differed from that in RH(wt) and the RH(wt)-HoxJ complexes, in which additional Ni--O bonds were detected by XAS. The Ni--O bonds caused only very minor changes of the EPR g-values of the Ni-C and Ni-L states and of the IR vibrational frequencies of the diatomic CN(-) and CO ligands at the active-site Fe ion. Both one Fe-S cluster in HoxB and an oxygen-rich Ni coordination seem to be stabilized by RH dimerization involving the C-terminus of HoxB and by complex formation with HoxJ.
调控镍铁氢化酶(RH)来自产氢氧杆菌,作为一种耐氧的氢传感器,它由含有活性位点的大亚基 HoxC 亚基和携带 Fe-S 簇的小亚基 HoxB 组成。在体内,HoxBC 亚基形成二聚体,命名为 RH(wt)。RH(wt)蛋白将其信号传递给组氨酸蛋白激酶 HoxJ,后者本身形成同源四聚体,并与位于细胞质中的 RH(wt)(RH(wt)-HoxJ(wt))形成稳定的复合物。在这项研究中,我们使用 X 射线吸收(XAS)、电子顺磁共振(EPR)和傅里叶变换红外(FTIR)光谱来研究 RH 和 HoxJ 之间的各种复合物对 Ni-Fe 活性位点和 Fe-S 簇的结构和电子性质的影响。除了 RH(wt)蛋白和 RH(wt)-HoxJ(wt)复合物外,我们还研究了 RH(stop)蛋白,由于 HoxB 的 C 末端缺失,它仅由一个 HoxB 和 HoxC 单元组成,以及 RH(wt)-HoxJ(Deltakinase),其中组氨酸蛋白激酶缺乏传递结构域。所有构建体都与 H2 反应,导致活性位点的可检测到的 Ni(III)-C 状态的形成和可通过 XAS 检测到的 Fe-S 簇的还原,从而证实 H2 裂解与 HoxJ 蛋白的存在无关。在 RH(stop)中,在制备过程中可能丢失了一个 Fe-S 簇。RH(stop)中活性位点 Ni 的配位与 RH(wt)和 RH(wt)-HoxJ 复合物不同,在这些复合物中通过 XAS 检测到了额外的 Ni-O 键。Ni-O 键仅对 Ni-C 和 Ni-L 状态的 EPR g 值以及活性位 Fe 离子上的二原子 CN-和 CO 配体的 IR 振动频率产生很小的变化。HoxB 中的一个 Fe-S 簇和富含氧的 Ni 配位似乎都通过涉及 HoxB C 末端的 RH 二聚化和与 HoxJ 的复合物形成而稳定。