Roncaroli Federico, Bill Eckhard, Friedrich Bärbel, Lenz Oliver, Lubitz Wolfgang, Pandelia Maria-Eirini
Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , 45470 Mülheim an der Ruhr , Germany . Email:
Department of Condensed Matter Physics , Centro Atómico Constituyentes , Comisión Nacional de Energía Atómica (CNEA) , Argentina.
Chem Sci. 2015 Aug 1;6(8):4495-4507. doi: 10.1039/c5sc01560j. Epub 2015 May 26.
The regulatory hydrogenase (RH) from H16 acts as a sensor for the detection of environmental H and regulates gene expression related to hydrogenase-mediated cellular metabolism. In marked contrast to prototypical energy-converting [NiFe] hydrogenases, the RH is apparently insensitive to inhibition by O and CO. While the physiological function of regulatory hydrogenases is well established, little is known about the redox cycling of the [NiFe] center and the nature of the iron-sulfur (FeS) clusters acting as electron relay. The absence of any FeS cluster signals in EPR had been attributed to their particular nature, whereas the observation of essentially only two active site redox states, namely Ni-SI and Ni-C, invoked a different operant mechanism. In the present work, we employ a combination of Mössbauer, FTIR and EPR spectroscopic techniques to study the RH, and the results are consistent with the presence of three [4Fe-4S] centers in the small subunit. In the as-isolated, oxidized RH all FeS clusters reside in the EPR-silent 2+ state. Incubation with H leads to reduction of two of the [4Fe-4S] clusters, whereas only strongly reducing agents lead to reduction of the third cluster, which is ascribed to be the [4Fe-4S] center in 'proximal' position to the [NiFe] center. In the two different active site redox states, the low-spin Fe exhibits distinct Mössbauer features attributed to changes in the electronic and geometric structure of the catalytic center. The results are discussed with regard to the spectral characteristics and physiological function of H-sensing regulatory hydrogenases.
来自H16的调节性氢化酶(RH)作为检测环境中氢气的传感器,并调节与氢化酶介导的细胞代谢相关的基因表达。与典型的能量转换[NiFe]氢化酶形成鲜明对比的是,RH显然对氧气和一氧化碳的抑制不敏感。虽然调节性氢化酶的生理功能已得到充分证实,但对于[NiFe]中心的氧化还原循环以及作为电子中继的铁硫(FeS)簇的性质却知之甚少。电子顺磁共振(EPR)中未检测到任何FeS簇信号,这归因于它们的特殊性质,而基本上仅观察到两种活性位点氧化还原状态,即Ni-SI和Ni-C,这引发了一种不同的作用机制。在本研究中,我们结合使用穆斯堡尔谱、傅里叶变换红外光谱(FTIR)和EPR光谱技术来研究RH,结果表明小亚基中存在三个[4Fe-4S]中心。在刚分离出的氧化态RH中,所有FeS簇都处于EPR沉默的2+状态。与氢气孵育会导致两个[4Fe-4S]簇还原,而只有强还原剂会导致第三个簇还原,该簇被认为是位于[NiFe]中心“近端”位置的[4Fe-4S]中心。在两种不同的活性位点氧化还原状态下,低自旋铁呈现出不同的穆斯堡尔特征,这归因于催化中心电子和几何结构的变化。我们结合氢气感应调节性氢化酶的光谱特征和生理功能对结果进行了讨论。