Suppr超能文献

微阵列数据分析中对扩增、杂交和定位效应的描述可产生更好质量的标准化效果。

Delineation of amplification, hybridization and location effects in microarray data yields better-quality normalization.

机构信息

Delft Bioinformatics Lab, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands.

出版信息

BMC Bioinformatics. 2010 Mar 26;11:156. doi: 10.1186/1471-2105-11-156.

Abstract

BACKGROUND

Oligonucleotide arrays have become one of the most widely used high-throughput tools in biology. Due to their sensitivity to experimental conditions, normalization is a crucial step when comparing measurements from these arrays. Normalization is, however, far from a solved problem. Frequently, we encounter datasets with significant technical effects that currently available methods are not able to correct.

RESULTS

We show that by a careful decomposition of probe specific amplification, hybridization and array location effects, a normalization can be performed that allows for a much improved analysis of these data. Identification of the technical sources of variation between arrays has allowed us to build statistical models that are used to estimate how the signal of individual probes is affected, based on their properties. This enables a model-based normalization that is probe-specific, in contrast with the signal intensity distribution normalization performed by many current methods. Next to this, we propose a novel way of handling background correction, enabling the use of background information to weight probes during summarization. Testing of the proposed method shows a much improved detection of differentially expressed genes over earlier proposed methods, even when tested on (experimentally tightly controlled and replicated) spike-in datasets.

CONCLUSIONS

When a limited number of arrays are available, or when arrays are run in different batches, technical effects have a large influence on the measured expression of genes. We show that a detailed modelling and correction of these technical effects allows for an improved analysis in these situations.

摘要

背景

寡核苷酸微阵列已成为生物学中应用最广泛的高通量工具之一。由于它们对实验条件敏感,因此在比较这些微阵列的测量值时,归一化是一个关键步骤。然而,归一化远未得到解决。我们经常遇到具有显著技术效应的数据集,而目前可用的方法无法纠正这些效应。

结果

我们通过仔细分解探针特异性扩增、杂交和微阵列位置效应,可以进行归一化,从而大大改进对这些数据的分析。鉴定微阵列之间技术变异的来源使我们能够构建统计模型,根据探针的特性来估计单个探针的信号如何受到影响。这使得可以进行基于模型的归一化,与许多当前方法执行的信号强度分布归一化形成对比。除此之外,我们还提出了一种新的背景校正处理方法,在汇总时可以使用背景信息来加权探针。对所提出方法的测试表明,即使在(经过严格实验控制和复制的) Spike-in 数据集上进行测试,与早期提出的方法相比,该方法在检测差异表达基因方面有了很大的改进。

结论

当可用的微阵列数量有限,或者微阵列在不同批次中运行时,技术效应会对基因的测量表达产生很大影响。我们表明,详细建模和纠正这些技术效应可以在这些情况下改善分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbac/2857856/88e8d998c7b3/1471-2105-11-156-1.jpg

相似文献

2
Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.
Comput Methods Programs Biomed. 2013 Aug;111(2):402-9. doi: 10.1016/j.cmpb.2013.04.006. Epub 2013 May 31.
3
A probe-treatment-reference (PTR) model for the analysis of oligonucleotide expression microarrays.
BMC Bioinformatics. 2008 Apr 14;9:194. doi: 10.1186/1471-2105-9-194.
5
A modified LOESS normalization applied to microRNA arrays: a comparative evaluation.
Bioinformatics. 2009 Oct 15;25(20):2685-91. doi: 10.1093/bioinformatics/btp443. Epub 2009 Jul 23.
6
Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model.
Bioinformatics. 2002 Dec;18(12):1633-40. doi: 10.1093/bioinformatics/18.12.1633.
8
A distribution free summarization method for Affymetrix GeneChip arrays.
Bioinformatics. 2007 Feb 1;23(3):321-7. doi: 10.1093/bioinformatics/btl609. Epub 2006 Dec 5.
9
An adaptive method for cDNA microarray normalization.
BMC Bioinformatics. 2005 Feb 11;6:28. doi: 10.1186/1471-2105-6-28.
10
Normalization of oligonucleotide arrays based on the least-variant set of genes.
BMC Bioinformatics. 2008 Mar 5;9:140. doi: 10.1186/1471-2105-9-140.

引用本文的文献

1
Microarray experiments and factors which affect their reliability.
Biol Direct. 2015 Sep 3;10:46. doi: 10.1186/s13062-015-0077-2.
2
Detection and correction of probe-level artefacts on microarrays.
BMC Bioinformatics. 2012 May 30;13:114. doi: 10.1186/1471-2105-13-114.

本文引用的文献

1
A probe-treatment-reference (PTR) model for the analysis of oligonucleotide expression microarrays.
BMC Bioinformatics. 2008 Apr 14;9:194. doi: 10.1186/1471-2105-9-194.
2
Explaining differences in saturation levels for Affymetrix GeneChip arrays.
Nucleic Acids Res. 2007;35(12):4154-63. doi: 10.1093/nar/gkm348. Epub 2007 Jun 12.
3
A rapid and efficient method for expansion of human mesenchymal stem cells.
Tissue Eng. 2007 Jan;13(1):3-9. doi: 10.1089/ten.2005.0513.
4
Relationship between gene expression and observed intensities in DNA microarrays--a modeling study.
Nucleic Acids Res. 2006 May 24;34(9):e70. doi: 10.1093/nar/gkl122.
5
Comparison of Affymetrix GeneChip expression measures.
Bioinformatics. 2006 Apr 1;22(7):789-94. doi: 10.1093/bioinformatics/btk046. Epub 2006 Jan 12.
6
Sub-array normalization subject to differentiation.
Nucleic Acids Res. 2005 Oct 4;33(17):5565-73. doi: 10.1093/nar/gki844. Print 2005.
7
Stochastic models inspired by hybridization theory for short oligonucleotide arrays.
J Comput Biol. 2005 Jul-Aug;12(6):882-93. doi: 10.1089/cmb.2005.12.882.
8
affy--analysis of Affymetrix GeneChip data at the probe level.
Bioinformatics. 2004 Feb 12;20(3):307-15. doi: 10.1093/bioinformatics/btg405.
9
Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 1):011906. doi: 10.1103/PhysRevE.68.011906. Epub 2003 Jul 16.
10
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
Biostatistics. 2003 Apr;4(2):249-64. doi: 10.1093/biostatistics/4.2.249.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验