Suppr超能文献

基于基因变异最小集的寡核苷酸阵列标准化

Normalization of oligonucleotide arrays based on the least-variant set of genes.

作者信息

Calza Stefano, Valentini Davide, Pawitan Yudi

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

出版信息

BMC Bioinformatics. 2008 Mar 5;9:140. doi: 10.1186/1471-2105-9-140.

Abstract

BACKGROUND

It is well known that the normalization step of microarray data makes a difference in the downstream analysis. All normalization methods rely on certain assumptions, so differences in results can be traced to different sensitivities to violation of the assumptions. Illustrating the lack of robustness, in a striking spike-in experiment all existing normalization methods fail because of an imbalance between up- and down-regulated genes. This means it is still important to develop a normalization method that is robust against violation of the standard assumptions

RESULTS

We develop a new algorithm based on identification of the least-variant set (LVS) of genes across the arrays. The array-to-array variation is evaluated in the robust linear model fit of pre-normalized probe-level data. The genes are then used as a reference set for a non-linear normalization. The method is applicable to any existing expression summaries, such as MAS5 or RMA.

CONCLUSION

We show that LVS normalization outperforms other normalization methods when the standard assumptions are not satisfied. In the complex spike-in study, LVS performs similarly to the ideal (in practice unknown) housekeeping-gene normalization. An R package called lvs is available in http://www.meb.ki.se/~yudpaw.

摘要

背景

众所周知,微阵列数据的归一化步骤对下游分析有影响。所有归一化方法都依赖于某些假设,因此结果的差异可追溯到对假设违背的不同敏感性。在一个引人注目的掺入实验中,所有现有的归一化方法都因上调和下调基因之间的不平衡而失败,这说明了缺乏稳健性。这意味着开发一种对标准假设违背具有稳健性的归一化方法仍然很重要。

结果

我们基于识别跨阵列基因的最小变异集(LVS)开发了一种新算法。在预归一化探针水平数据的稳健线性模型拟合中评估阵列间的变异。然后将这些基因用作非线性归一化的参考集。该方法适用于任何现有的表达汇总,如MAS5或RMA。

结论

我们表明,当标准假设不满足时,LVS归一化优于其他归一化方法。在复杂的掺入研究中,LVS的表现类似于理想的(实际上未知的)管家基因归一化。可在http://www.meb.ki.se/~yudpaw获得一个名为lvs的R包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0966/2324100/d189233efa79/1471-2105-9-140-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验