Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Nucl Med Biol. 2010 Apr;37(3):347-55. doi: 10.1016/j.nucmedbio.2009.11.007. Epub 2010 Jan 15.
The nicotinic acetylcholine receptor (nAChR) alpha7 subtype (alpha(7) nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled alpha(7) nAChR ligands, (R)-2-[(11)C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ((11)C-MeQAA) and its isomer (S)-[(11)C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[(11)C]MeQAA for in vivo imaging of alpha(7) nAChR in the brain was evaluated in mice and monkeys.
The binding affinity for alpha(7) nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys.
The affinity for alpha(7) nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ((11)C-MeQAA: 7.68 and (11)C-MeQAA: 6.65 %dose/g at 5 min). The clearance of (11)C-MeQAA was slow in the hippocampus (alpha(7) nAChR-rich region) but was rapid in the cerebellum (alpha(7) nAChR-poor region). On the other hand, the clearance was fast for (11)C-MeQAA in all regions. The brain uptake of (11)C-MeQAA was decreased by methyllycaconitine (alpha(7) nAChR antagonist) treatment. In monkeys, alpha(7) nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for (11)C-MeQAA, while the uptake was rather homogeneous for (11)C-MeQAA.
(11)C-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for alpha(7) nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain alpha(7) nAChRs in vivo.
烟碱型乙酰胆碱受体(nAChR)α7 亚型(α(7)nAChR)是大脑中主要的 nAChR 亚型之一。我们合成了 C-11 标记的α(7)nAChR 配体(R)-2-[(11)C]甲基氨基苯甲酸 1-氮杂双环[2.2.2]辛-3-基酯[(11)C](R)-MeQAA及其异构体(S)-[(11)C]MeQAA,用于正电子发射断层扫描(PET)的体内研究。然后,在小鼠和猴子中评估了(R)-和(S)-[(11)C]MeQAA 作为体内成像α(7)nAChR 的潜力。
使用大鼠脑测量对α(7)nAChR 的亲和力。在小鼠中进行了生物分布和体内受体阻断研究。在清醒的猴子中进行了动态 PET 扫描。
(R)-和(S)-MeQAA 对α(7)nAChR 的亲和力分别为 41 和 182 nM。在小鼠脑中的初始摄取量很高[(11)C](R)-MeQAA:5 分钟时为 7.68%和[(11)C](S)-MeQAA:6.65%剂量/g。在富含α(7)nAChR 的海马区(海马区)中,(11)C(R)-MeQAA 的清除速度较慢,但在富含α(7)nAChR 的小脑区(小脑区)中清除速度较快。另一方面,(11)C(S)-MeQAA 在所有区域的清除速度都很快。用甲基金刚烷(α(7)nAChR 拮抗剂)处理可降低(11)C(R)-MeQAA 的脑摄取。在猴子中,α(7)nAChR 高度分布于丘脑和皮质,但在小脑分布较差。(11)C(R)-MeQAA 在皮质和丘脑中有很高的积聚,而(11)C(S)-MeQAA 的摄取则相对均匀。
成功合成了(11)C(R)-MeQAA,并显示出对大脑的高摄取。然而,由于对α(7)nAChR 的体内选择性不足,需要进一步进行 PET 动力学分析或结构优化,以实现体内脑α(7)nAChR 的特异性可视化。