Hillmer Ansel T, Zheng Ming-Qiang, Li Songye, Scheunemann Matthias, Lin Shu-fei, Holden Daniel, Labaree David, Ropchan Jim, Teodoro Rodrigo, Deuther-Conrad Winnie, Carson Richard E, Brust Peter, Huang Yiyun
PET Center, Yale University, 801 Howard Ave, PO Box 208048, New Haven, CT, 06520-8048, USA.
Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318, Leipzig, Germany.
Eur J Nucl Med Mol Imaging. 2016 Mar;43(3):537-47. doi: 10.1007/s00259-015-3209-0. Epub 2015 Oct 12.
Positron emission tomography (PET) radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[(18)F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([(18)F]DBT-10), in nonhuman primates.
[(18)F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [(18)F]DBT-10 PET, with measurement of [(18)F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [(18)F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (V T/f P).
[(18)F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/μmol at end of synthesis. Metabolism of [(18)F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55%. Uptake of [(18)F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4%. No evidence for radiolabeled [(18)F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated V T/f P values were 193-376 ml/cm(3) across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose-dependent blockade of [(18)F]DBT-10 binding by structural analog ASEM was observed throughout the brain, and occupancy plots yielded a V ND/f P estimate of 20 ± 16 ml/cm(3).
These results demonstrate suitable kinetic properties of [(18)F]DBT-10 for in vivo quantification of α7-nAChR binding in nonhuman primates.
α7烟碱型乙酰胆碱受体(nAChRs)特异性的正电子发射断层扫描(PET)放射性配体可对该受体进行体内成像,用于阿尔茨海默病、精神分裂症和药物滥用等神经病理学研究。本研究旨在表征α7-nAChR特异性放射性配体7-(1,4-二氮杂双环[3.2.2]壬烷-4-基)-2-[(18)F]-氟二苯并[b,d]噻吩5,5-二氧化物([(18)F]DBT-10)在非人灵长类动物中的动力学特性。
[(18)F]DBT-10通过硝基前体的亲核取代反应制备。对4只恒河猴进行[(18)F]DBT-10 PET成像,同时测量[(18)F]DBT-10母体浓度及其在动脉血浆中的代谢情况。对所有受试者进行基线PET扫描。在一次扫描后,对脑组织进行离体分析,以检查脑中的放射性标记代谢物。还进行了3次阻断扫描,分别注射0.69和1.24 mg/kg的α7-nAChR特异性配体ASEM,以评估[(18)F]DBT-10结合的剂量依赖性阻断情况。使用代谢物校正输入函数对PET数据进行动力学分析,以计算母体分数校正后的总分布容积(VT/fP)。
[(18)F]DBT-10在90分钟内合成,合成结束时比活度高达428±436 GBq/μmol。[(18)F]DBT-10的代谢在不同受试者之间有所差异,注射后120分钟时母体分数稳定在15%-55%。[(18)F]DBT-10在脑中的摄取迅速,30分钟内达到标准化摄取值(SUVs)峰值2.9-3.7。血浆游离分数为18.8±3.4%。在离体脑组织样本中未发现放射性标记的[(18)F]DBT-10代谢物。PET数据的动力学分析用双组织室模型描述最佳。各区域的估计VT/fP值为193-376 ml/cm³,区域排序为丘脑>额叶皮质>纹状体>海马体>枕叶皮质>小脑>脑桥。在整个脑中均观察到结构类似物ASEM对[(18)F]DBT-10结合的剂量依赖性阻断,占有率图得出VND/fP估计值为20±16 ml/cm³。
这些结果表明[(18)F]DBT-10具有适合在非人灵长类动物体内定量α7-nAChR结合的动力学特性。