Suppr超能文献

统计学和临床意义,以及如何使用置信区间来帮助解释这两者。

Statistical and clinical significance, and how to use confidence intervals to help interpret both.

机构信息

Sydney School of Nursing, University of Sydney, Sydney, Australia.

出版信息

Aust Crit Care. 2010 May;23(2):93-7. doi: 10.1016/j.aucc.2010.03.001. Epub 2010 Mar 29.

Abstract

Statistical significance is a statement about the likelihood of findings being due to chance. Classical significance testing, with its reliance on p values, can only provide a dichotomous result - statistically significant, or not. Limiting interpretation of research results to p values means that researchers may either overestimate or underestimate the meaning of their results. Very often the aim of clinical research is to trial an intervention with the intention that results based on a sample will generalise to the wider population. The p value on its own provides no information about the overall importance or meaning of the results to clinical practice, nor do they provide information as to what might happen in the future, or in the general population. Clinical significance is a decision based on the practical value or relevance of a particular treatment, and this may or may not involve statistical significance as an initial criterion. Confidence intervals are one way for researchers to help decide if a particular statistical result (whether significant or not) may be of relevance in practice.

摘要

统计学意义是关于发现结果是否由于偶然因素导致的一种陈述。经典的显著性检验,其依赖于 p 值,只能提供二分结果——统计学上显著或不显著。将研究结果的解释仅限于 p 值意味着研究人员可能会高估或低估其结果的意义。通常,临床研究的目的是试用一种干预措施,意图是基于样本的结果将推广到更广泛的人群。p 值本身不能提供关于结果对临床实践的整体重要性或意义的信息,也不能提供关于未来或一般人群中可能发生的情况的信息。临床意义是基于特定治疗的实际价值或相关性的决策,并且这可能涉及也可能不涉及统计学意义作为初始标准。置信区间是研究人员帮助确定特定统计结果(无论是否显著)在实践中是否相关的一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验