Department of Economics, Duke University, Durham, NC 27708, USA.
Neuroimage. 2011 May 15;56(2):699-708. doi: 10.1016/j.neuroimage.2010.03.057. Epub 2010 Mar 27.
Analyzing distributed patterns of brain activation using multivariate pattern analysis (MVPA) has become a popular approach for using functional magnetic resonance imaging (fMRI) data to predict mental states. While the majority of studies currently build separate classifiers for each participant in the sample, in principle a single classifier can be derived from and tested on data from all participants. These two approaches, within- and cross-participant classification, rely on potentially different sources of variability and thus may provide distinct information about brain function. Here, we used both approaches to identify brain regions that contain information about passively received monetary rewards (i.e., images of currency that influenced participant payment) and social rewards (i.e., images of human faces). Our within-participant analyses implicated regions in the ventral visual processing stream-including fusiform gyrus and primary visual cortex-and ventromedial prefrontal cortex (VMPFC). Two key results indicate these regions may contain statistically discriminable patterns that contain different informational representations. First, cross-participant analyses implicated additional brain regions, including striatum and anterior insula. The cross-participant analyses also revealed systematic changes in predictive power across brain regions, with the pattern of change consistent with the functional properties of regions. Second, individual differences in classifier performance in VMPFC were related to individual differences in preferences between our two reward modalities. We interpret these results as reflecting a distinction between patterns showing participant-specific functional organization and those indicating aspects of brain organization that generalize across individuals.
使用多元模式分析(MVPA)分析大脑激活的分布式模式已成为使用功能磁共振成像(fMRI)数据预测心理状态的一种流行方法。虽然大多数研究目前为样本中的每个参与者构建单独的分类器,但原则上可以从所有参与者的数据中推导出并测试单个分类器。这两种方法,即参与者内和参与者间分类,依赖于潜在的不同来源的可变性,因此可能提供关于大脑功能的不同信息。在这里,我们使用这两种方法来识别包含有关被动接受货币奖励(即影响参与者支付的货币图像)和社会奖励(即人类面孔的图像)信息的脑区。我们的参与者内分析涉及腹侧视觉处理流中的区域,包括梭状回和初级视觉皮层以及腹内侧前额叶皮层(VMPFC)。两个关键结果表明,这些区域可能包含具有不同信息表示的可区分模式。首先,参与者间分析涉及额外的脑区,包括纹状体和前岛叶。参与者间分析还揭示了大脑区域预测能力的系统性变化,变化模式与区域的功能特性一致。其次,VMPFC 中分类器性能的个体差异与两种奖励模式之间的个体偏好差异有关。我们将这些结果解释为反映了显示参与者特定功能组织的模式与指示大脑组织在个体间普遍存在的方面的模式之间的区别。