Department of Biological Sciences, Stanford University, Stanford, California 94305, USA.
Ecol Appl. 2010 Jan;20(1):5-15. doi: 10.1890/08-0127.1.
Nutrient limitation to primary productivity and other biological processes is widespread in terrestrial ecosystems, and nitrogen (N) and phosphorus (P) are the most common limiting elements, both individually and in combination. Mechanisms that drive P limitation, and their interactions with the N cycle, have received less attention than mechanisms causing N limitation. We identify and discuss six mechanisms that could drive P limitation in terrestrial ecosystems. The best known of these is depletion-driven limitation, in which accumulated P losses during long-term soil and ecosystem development contribute to what Walker and Syers termed a "terminal steady state" of profound P depletion and limitation. The other mechanisms are soil barriers that prevent access to P; transactional limitation, in which weathering of P-containing minerals does not keep pace with the supply of other resources; low-P parent materials; P sinks; and anthropogenic changes that increase the supply of other resources (often N) relative to P. We distinguish proximate nutrient limitation (which occurs where additions of a nutrient stimulate biological processes, especially productivity) from ultimate nutrient limitation (where additions of a nutrient can transform ecosystems). Of the mechanisms that drive P limitation, we suggest that depletion, soil barriers, and low-P parent material often cause ultimate limitation because they control the ecosystem mass balance of P. Similarly, demand-independent losses and constraints to N fixation can control the ecosystem-level mass balance of N and cause it to be an ultimate limiting nutrient.
营养限制对初级生产力和其他生物过程在陆地生态系统中普遍存在,氮(N)和磷(P)是最常见的限制因素,无论是单独存在还是组合存在。与导致 N 限制的机制相比,驱动 P 限制的机制及其与 N 循环的相互作用受到的关注较少。我们确定并讨论了六种可能导致陆地生态系统 P 限制的机制。其中最著名的是消耗驱动的限制,即在长期的土壤和生态系统发展过程中积累的 P 损失导致沃克和赛耶斯所称的“终端稳定状态”的深刻 P 耗尽和限制。其他机制是土壤屏障,阻止 P 的进入;交易性限制,其中含 P 矿物的风化跟不上其他资源的供应;低 P 母质;P 汇;以及增加其他资源(通常是 N)供应而相对减少 P 供应的人为变化。我们区分了直接营养限制(即添加一种营养物质刺激生物过程,特别是生产力)和最终营养限制(即添加一种营养物质可以改变生态系统)。在驱动 P 限制的机制中,我们认为消耗、土壤屏障和低 P 母质通常会导致最终限制,因为它们控制着生态系统 P 的质量平衡。同样,与需求无关的 N 固定损失和限制也可以控制生态系统水平的 N 质量平衡,并使其成为最终限制养分。