Suppr超能文献

儿茶酚胺多形性室性心动过速突变 R33Q 破坏了调节可逆肌浆网钙结合蛋白聚合的 N 端结构基序。

The catecholaminergic polymorphic ventricular tachycardia mutation R33Q disrupts the N-terminal structural motif that regulates reversible calsequestrin polymerization.

机构信息

Department of Physiology and Cell Biology, The Ohio State University College of Medicine, and the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Biol Chem. 2010 May 28;285(22):17188-96. doi: 10.1074/jbc.M109.096354. Epub 2010 Mar 30.

Abstract

Calsequestrin undergoes dynamic polymerization with increasing calcium concentration by front-to-front dimerization and back-to-back packing, forming wire-shaped structures. A recent finding that point mutation R33Q leads to lethal catecholaminergic polymorphic ventricular tachycardia (CPVT) implies a crucial role for the N terminus. In this study, we demonstrate that this mutation resides in a highly conserved alternately charged residue cluster (DGKDR; cluster 1) in the N-terminal end of calsequestrin. We further show that this cluster configures itself as a ring system and that the dipolar arrangement within the cluster brings about a critical conformational flip of Lys(31)-Asp(32) essential for dimer stabilization by formation of a H-bond network. We additionally show that Ca(2+)-induced calsequestrin aggregation is nonlinear and reversible and can regain the native conformation by Ca(2+) chelation with EGTA. This study suggests that cluster 1 works as a molecular switch and governs the bidirectional transition between the CASQ2 monomer and dimer. We further demonstrate that mutations disrupting the alternating charge pattern of the cluster, including R33Q, impair Ca(2+)-CASQ2 interaction, leading to altered polymerization-depolymerization dynamics. This study provides new mechanistic insight into the functional effects of the R33Q mutation and its potential role in CPVT.

摘要

钙释放通道蛋白封端肽(calsequestrin)在钙离子浓度增加时通过前对前二聚化和背对背堆积发生动态聚合,形成线状结构。最近的一项发现表明,点突变 R33Q 导致致命性儿茶酚胺多形性室性心动过速(CPVT),这意味着 N 端具有重要作用。在这项研究中,我们证明该突变位于钙释放通道蛋白封端肽 N 端高度保守的交替带电残基簇(DGKDR;簇 1)中。我们进一步表明,该簇自身构成一个环系统,并且簇内的偶极排列导致 Lys(31)-Asp(32)的关键构象翻转,这对于通过形成氢键网络稳定二聚体至关重要。我们还表明,Ca(2+)诱导的钙释放通道蛋白封端肽聚集是非线性和可逆的,并且可以通过与 EGTA 螯合 Ca(2+)来恢复其天然构象。这项研究表明,簇 1 作为分子开关,控制 CASQ2 单体和二聚体之间的双向转变。我们进一步证明,破坏簇交替电荷模式的突变,包括 R33Q,会损害 Ca(2+)-CASQ2 相互作用,导致聚合-解聚动力学发生改变。这项研究为 R33Q 突变的功能影响及其在 CPVT 中的潜在作用提供了新的机制见解。

相似文献

5
Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants.
Biochem J. 2011 Apr 15;435(2):391-9. doi: 10.1042/BJ20101771.

引用本文的文献

1
Cardiac Channelopathies: Clinical Diagnosis and Promising Therapeutics.
J Am Heart Assoc. 2025 May 6;14(9):e040072. doi: 10.1161/JAHA.124.040072. Epub 2025 Apr 25.
2
Deep-time gene expression shift reveals an ancient change in avian muscle phenotypes.
PLoS Genet. 2025 Apr 11;21(4):e1011663. doi: 10.1371/journal.pgen.1011663. eCollection 2025 Apr.
4
The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias.
Biophys Rev. 2022 Jan 7;14(1):329-352. doi: 10.1007/s12551-021-00914-6. eCollection 2022 Feb.
6
The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia.
Nat Struct Mol Biol. 2020 Dec;27(12):1142-1151. doi: 10.1038/s41594-020-0510-9. Epub 2020 Oct 12.
8
Calcium Handling Defects and Cardiac Arrhythmia Syndromes.
Front Pharmacol. 2020 Feb 25;11:72. doi: 10.3389/fphar.2020.00072. eCollection 2020.
9
First Insight on Small Molecules as Cardiac Calsequestrin Stabilizers.
ACS Omega. 2019 Jul 2;4(7):11508-11514. doi: 10.1021/acsomega.9b01113. eCollection 2019 Jul 31.
10
Compound heterozygous CASQ2 mutations and long-term course of catecholaminergic polymorphic ventricular tachycardia.
Mol Genet Genomic Med. 2017 Nov;5(6):788-794. doi: 10.1002/mgg3.323. Epub 2017 Aug 22.

本文引用的文献

2
Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins.
EMBO J. 2009 Sep 16;28(18):2846-57. doi: 10.1038/emboj.2009.224. Epub 2009 Aug 20.
3
New roles of calsequestrin and triadin in cardiac muscle.
J Physiol. 2009 Jul 1;587(Pt 13):3081-7. doi: 10.1113/jphysiol.2009.172098. Epub 2009 May 18.
4
Architecture and regulation of the Ca2+ delivery system in muscle cells.
Appl Physiol Nutr Metab. 2009 Jun;34(3):323-7. doi: 10.1139/H09-017.
5
Deconstructing calsequestrin. Complex buffering in the calcium store of skeletal muscle.
J Physiol. 2009 Jul 1;587(Pt 13):3101-11. doi: 10.1113/jphysiol.2009.171934. Epub 2009 Apr 29.
6
Ryanodine receptor-mediated arrhythmias and sudden cardiac death.
Pharmacol Ther. 2009 Aug;123(2):151-77. doi: 10.1016/j.pharmthera.2009.03.006. Epub 2009 Apr 1.
7
Structure of frozen-hydrated triad junctions: a case study in motif searching inside tomograms.
J Struct Biol. 2009 Feb;165(2):53-63. doi: 10.1016/j.jsb.2008.09.011. Epub 2008 Nov 5.
8
Calsequestrin-mediated mechanism for cellular calcium transient alternans.
Biophys J. 2008 Oct;95(8):3767-89. doi: 10.1529/biophysj.108.130419. Epub 2008 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验