Department of Physiology and Cell Biology, The Ohio State University College of Medicine, and the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
J Biol Chem. 2010 May 28;285(22):17188-96. doi: 10.1074/jbc.M109.096354. Epub 2010 Mar 30.
Calsequestrin undergoes dynamic polymerization with increasing calcium concentration by front-to-front dimerization and back-to-back packing, forming wire-shaped structures. A recent finding that point mutation R33Q leads to lethal catecholaminergic polymorphic ventricular tachycardia (CPVT) implies a crucial role for the N terminus. In this study, we demonstrate that this mutation resides in a highly conserved alternately charged residue cluster (DGKDR; cluster 1) in the N-terminal end of calsequestrin. We further show that this cluster configures itself as a ring system and that the dipolar arrangement within the cluster brings about a critical conformational flip of Lys(31)-Asp(32) essential for dimer stabilization by formation of a H-bond network. We additionally show that Ca(2+)-induced calsequestrin aggregation is nonlinear and reversible and can regain the native conformation by Ca(2+) chelation with EGTA. This study suggests that cluster 1 works as a molecular switch and governs the bidirectional transition between the CASQ2 monomer and dimer. We further demonstrate that mutations disrupting the alternating charge pattern of the cluster, including R33Q, impair Ca(2+)-CASQ2 interaction, leading to altered polymerization-depolymerization dynamics. This study provides new mechanistic insight into the functional effects of the R33Q mutation and its potential role in CPVT.
钙释放通道蛋白封端肽(calsequestrin)在钙离子浓度增加时通过前对前二聚化和背对背堆积发生动态聚合,形成线状结构。最近的一项发现表明,点突变 R33Q 导致致命性儿茶酚胺多形性室性心动过速(CPVT),这意味着 N 端具有重要作用。在这项研究中,我们证明该突变位于钙释放通道蛋白封端肽 N 端高度保守的交替带电残基簇(DGKDR;簇 1)中。我们进一步表明,该簇自身构成一个环系统,并且簇内的偶极排列导致 Lys(31)-Asp(32)的关键构象翻转,这对于通过形成氢键网络稳定二聚体至关重要。我们还表明,Ca(2+)诱导的钙释放通道蛋白封端肽聚集是非线性和可逆的,并且可以通过与 EGTA 螯合 Ca(2+)来恢复其天然构象。这项研究表明,簇 1 作为分子开关,控制 CASQ2 单体和二聚体之间的双向转变。我们进一步证明,破坏簇交替电荷模式的突变,包括 R33Q,会损害 Ca(2+)-CASQ2 相互作用,导致聚合-解聚动力学发生改变。这项研究为 R33Q 突变的功能影响及其在 CPVT 中的潜在作用提供了新的机制见解。