Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
Nat Struct Mol Biol. 2020 Dec;27(12):1142-1151. doi: 10.1038/s41594-020-0510-9. Epub 2020 Oct 12.
Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.
钙结合蛋白 calsequestrin 的突变导致高度致命的家族性心律失常儿茶酚胺多形性室性心动过速 (CPVT)。在体内,calsequestrin 多聚化成纤维,但目前还没有 calsequestrin 纤维的原子分辨率结构。我们报告了一个人类心脏 calsequestrin 纤维的晶体结构,并进行了支持性突变分析和体外纤维形成实验。我们鉴定并表征了一个新的与疾病相关的 calsequestrin 突变 S173I,它位于纤维形成界面,进一步表明之前报道的显性疾病突变 K180R 也位于同一表面。这两种突变都破坏了纤维的形成,表明疾病的病理是由于多聚体形成的缺陷。一个 ytterbium 衍生的结构在纤维形成界面上确定了多个可信的钙结合位点,解释了钙存在下 calsequestrin 纤维形成的原子基础。因此,我们的研究提供了一个统一的分子机制,通过该机制,显性作用的 calsequestrin 突变引发致命性心律失常。