Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA.
ACS Appl Mater Interfaces. 2009 May;1(5):1013-22. doi: 10.1021/am900001h.
TiO2 thin films are highly stable and can be deposited onto a wide variety of substrate materials under moderate conditions. We demonstrate that organic alkenes will graft to the surface of TiO2 when illuminated with UV light at 254 nm and that the resulting layers provide a starting point for the preparation of DNA-modified TiO2 thin films exhibiting excellent stability and biomolecular selectivity. By using alkenes with a protected amino group at the distal end, the grafted layers can be deprotected to yield molecular layers with exposed primary amino groups that can then be used to covalently link DNA oligonucleotides to the TiO2 surface. We demonstrate that the resulting DNA-modified surfaces exhibit excellent selectivity toward complementary versus noncomplementary target sequences in solution and that the surfaces can withstand 25 cycles of hybridization and denaturation in 8.3 M urea with little or no degradation. Furthermore, the use of simple masking methods provides a way to directly control the spatial location of the grafted layers, thereby providing a way to photopattern the spatial distribution of biologically active molecules to the TiO2 surfaces. Using Ti films ranging from 10 to 100 nm in thickness allows the preparation of TiO2 films that range from highly reflective to almost completely transparent; in both cases, the photochemical grafting of alkenes can be used as a starting point for stable surfaces with good biomolecular recognition properties.
TiO2 薄膜具有高度稳定性,可以在温和条件下沉积在各种基底材料上。我们证明,当用 254nm 的紫外光照射时,有机烯烃会接枝到 TiO2 的表面,并且生成的层为制备具有优异稳定性和生物分子选择性的 DNA 修饰 TiO2 薄膜提供了起点。通过使用在远端带有保护氨基的烯烃,可以将接枝层脱保护,得到暴露的伯氨基的分子层,然后可以将 DNA 寡核苷酸共价连接到 TiO2 表面。我们证明,所得的 DNA 修饰表面在溶液中对互补和非互补靶序列表现出优异的选择性,并且表面可以承受 25 个杂交和变性循环在 8.3 M 脲中,几乎没有或没有降解。此外,简单的掩蔽方法的使用提供了一种直接控制接枝层空间位置的方法,从而提供了一种将生物活性分子的空间分布图案化到 TiO2 表面的方法。使用厚度为 10 至 100nm 的 Ti 薄膜可以制备从高度反射到几乎完全透明的 TiO2 薄膜;在这两种情况下,烯烃的光化学接枝都可以作为具有良好生物分子识别性能的稳定表面的起点。