Suppr超能文献

采用反相微乳液法一步合成碳包覆的 LiNi(1/3)Co(1/3)Mn(1/3)O2 及其性能表征。

Synthesis and characterization of carbon-coated LiNi(1/3)Co(1/3)Mn(1/3)O2 in a single step by an inverse microemulsion route.

机构信息

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.

出版信息

ACS Appl Mater Interfaces. 2009 Jun;1(6):1241-9. doi: 10.1021/am900120s.

Abstract

Layered LiNi(1/3)Co(1/3)Mn(1/3)O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi(1/3)Co(1/3)Mn(1/3)O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi(1/3)Co(1/3)Mn(1/3)O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi(1/3)Co(1/3)Mn(1/3)O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi(1/3)Co(1/3)Mn(1/3)O2 particles.

摘要

层状 LiNi(1/3)Co(1/3)Mn(1/3)O2 与 LiCoO2 结构相同,被认为是一种有潜力的阴极材料。在颗粒表面覆盖一层碳可以提高电极性能,这归因于晶粒连接性的增加以及对金属氧化物的化学稳定性的提高。本工作涉及在葡萄糖存在下,在反相微乳液介质中原位合成碳包覆的亚微米级 LiNi(1/3)Co(1/3)Mn(1/3)O2 颗粒。反应得到的前驱体在空气中于 900°C 下加热 6 小时,得到结晶的 LiNi(1/3)Co(1/3)Mn(1/3)O2。研究发现,碳包覆赋予了该化合物比裸样更高的比表面积和孔隙率。电化学特性研究表明,碳包覆的 LiNi(1/3)Co(1/3)Mn(1/3)O2 样品表现出改善的倍率性能和循环性能。碳涂层被证明可以抑制容量衰减,这在裸样中是很常见的。阻抗谱数据为碳涂层对 LiNi(1/3)Co(1/3)Mn(1/3)O2 颗粒的有益影响提供了额外的证据。

相似文献

2
LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
ACS Appl Mater Interfaces. 2011 Aug;3(8):2966-72. doi: 10.1021/am200421h. Epub 2011 Jul 13.
4
Improved kinetics of LiNi(1/3)Mn(1/3)Co(1/3)O2 cathode material through reduced graphene oxide networks.
Phys Chem Chem Phys. 2012 Feb 28;14(8):2934-9. doi: 10.1039/c2cp23363k. Epub 2012 Jan 25.
5
Synthesis of high voltage (4.9 V) cycling LiNixCoyMn(1-x-y)O2 cathode materials for lithium rechargeable batteries.
Phys Chem Chem Phys. 2011 Apr 7;13(13):6125-32. doi: 10.1039/c0cp02258f. Epub 2011 Feb 24.
8
Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries.
Dalton Trans. 2008 Oct 28(40):5471-5. doi: 10.1039/b806662k. Epub 2008 Aug 15.
9
Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
Phys Chem Chem Phys. 2012 Oct 21;14(39):13515-21. doi: 10.1039/c2cp43007j.
10
Tailoring the surface properties of LiNi(0.4)Mn(0.4)Co(0.2)O2 by titanium substitution for improved high voltage cycling performance.
Phys Chem Chem Phys. 2015 Sep 14;17(34):21778-81. doi: 10.1039/c5cp03228h. Epub 2015 Aug 6.

引用本文的文献

1
Recent progress in high-voltage P2-Na TMO materials and their future perspectives.
RSC Adv. 2024 Aug 8;14(34):24797-24814. doi: 10.1039/d4ra04790g. eCollection 2024 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验