Department of Chemistry, National Cheng Kung University 1, Ta Hsueh Road, Tainan, Taiwan, ROC.
Langmuir. 2010 Jun 1;26(11):8218-25. doi: 10.1021/la904576z.
The chemistry of 2-iodoacetic acid on Cu(100) has been studied by a combination of reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reaction/desorption (TPR/D), and theoretical calculations based on density functional theory for the optimized intermediate structures. In the thermal decomposition of ICH(2)COOH on Cu(100) with a coverage less than a half monolayer, three surface intermediates, CH(2)COO, CH(3)COO, and CCOH, are generated and characterized spectroscopically. Based on their different thermal stabilities, the reaction pathways of ICH(2)COOH on Cu(100) at temperatures higher than 230 K are established to be ICH(2)COOH --> CH(2)COO + H + I, CH(2)COO + H --> CH(3)COO, and CH(3)COO --> CCOH. Theoretical calculations suggest that the surface CH(2)COO has the skeletal plane, with delocalized pi electrons, approximately parallel to the surface. The calculated Mulliken charges agree with the detected binding energies for the two carbon atoms in CH(2)COO on Cu(100). The CCOH derived from CH(3)COO decomposition has a CC stretching frequency at 2025 cm(-1), reflecting its triple-bond character which is consistent with the calculated CCOH structure on Cu(100). Theoretically, CCOH at the bridge and hollow sites has a similar stability and is adsorbed with the molecular axis approximately perpendicular to the surface. The TPR/D study has shown the evolution of the products of H(2), CH(4), H(2)O, CO, CO(2), CH(2)CO, and CH(3)COOH from CH(3)COO decomposition between 500 and 600 K and the formation of H(2) and CO from CCOH between 600 and 700 K. However, at a coverage near one monolayer, the major species formed at 230 and 320 K are proposed to be ICH(2)COO and CH(3)COO. CH(3)COO becomes the only species present on the surface at 400 K. That is, there are two reaction pathways of ICH(2)COOH --> ICH(2)COO + H and ICH(2)COO + H --> CH(3)COO + I (possibly via CH(2)COO), which are different from those observed at lower coverages. Because the C-I bond dissociation of iodoethane on copper single crystal surfaces occurs at approximately 120 K and that the deprotonation of CH(3)COOH on Cu(100) occurs at approximately 220 K, the preferential COOH dehydrogenation of monolayer ICH(2)COOH is an interesting result, possibly due to electronic and/or steric effects.
2-碘乙酸在 Cu(100) 上的化学性质已通过反射吸收红外光谱 (RAIRS)、X 射线光电子能谱 (XPS)、程序升温反应/解吸 (TPR/D) 和基于密度泛函理论优化中间结构的理论计算的组合进行了研究。在覆盖度小于半单层的情况下,ICH(2)COOH 在 Cu(100)上的热分解会生成三种表面中间体,CH(2)COO、CH(3)COO 和 CCOH,并通过光谱进行了表征。基于它们不同的热稳定性,建立了温度高于 230 K 时 ICH(2)COOH 在 Cu(100)上的反应途径为 ICH(2)COOH --> CH(2)COO + H + I,CH(2)COO + H --> CH(3)COO,和 CH(3)COO --> CCOH。理论计算表明,表面 CH(2)COO 具有骨架平面,具有离域的 pi 电子,大致平行于表面。计算出的 Mulliken 电荷与在 Cu(100)上检测到的 CH(2)COO 中两个碳原子的结合能一致。源自 CH(3)COO 分解的 CCOH 的 CC 伸缩频率在 2025 cm(-1)处,反映出其三键特征,这与在 Cu(100)上计算出的 CCOH 结构一致。理论上,桥位和空位上的 CCOH 具有相似的稳定性,分子轴大致垂直于表面吸附。TPR/D 研究表明,在 500 至 600 K 之间,CH(3)COO 分解的产物为 H(2)、CH(4)、H(2)O、CO、CO(2)、CH(2)CO 和 CH(3)COOH,而在 600 至 700 K 之间,CCOH 分解生成 H(2)和 CO。然而,在接近单层的覆盖度下,在 230 和 320 K 形成的主要物种被提议为 ICH(2)COO 和 CH(3)COO。CH(3)COO 在 400 K 时成为表面上唯一存在的物质。也就是说,ICH(2)COOH 有两种反应途径,即 ICH(2)COOH --> ICH(2)COO + H 和 ICH(2)COO + H --> CH(3)COO + I(可能通过 CH(2)COO),这与在较低覆盖度下观察到的途径不同。由于碘乙烷在铜单晶表面上的 C-I 键断裂发生在大约 120 K,而 CH(3)COOH 在 Cu(100)上的脱质子化发生在大约 220 K,因此单层 ICH(2)COOH 的优先 COOH 脱氢是一个有趣的结果,这可能是由于电子和/或空间效应。