Suppr超能文献

拟南芥 ALG3 突变体在 ER 中合成不成熟的寡糖并积累独特的 N-聚糖。

Arabidopsis thaliana ALG3 mutant synthesizes immature oligosaccharides in the ER and accumulates unique N-glycans.

机构信息

The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Osaka 565, Japan.

出版信息

Glycobiology. 2010 Jun;20(6):736-51. doi: 10.1093/glycob/cwq028. Epub 2010 Mar 8.

Abstract

The core oligosaccharide Glc(3)Man(9)GlcNAc(2) is assembled by a series of membrane-bound glycosyltransferases as the lipid carrier dolichylpyrophosphate-linked glycan in the endoplasmic reticulum (ER). The first step of this assembly pathway on the ER luminal side is mediated by ALG3 (asparagine-linked glycosylation 3), which is a highly conserved reaction among eukaryotic cells. Complementary genetics compared with Saccharomyces cerevisiae ALG gene families and bioinformatic approaches have enabled the identification of ALG3 from other species. In Arabidopsis thaliana, AtALG3 (At2g47760) was identified as alpha1,3-mannosyltransferase. Complementation analysis showed that AtALG3 rescued the temperature-sensitive phenotype, that lipid-linked oligosaccharide assemblies and that protein underglycosylation of S. cerevisiae ALG3-deficient mutant. In Arabidopsis ALG3 mutant, an immature lipid-linked oligosaccharide structure, M5(ER), was synthesized, and used for protein N-glycosylation, resulting in the blockade of subsequent maturation with the concanavalin A affinoactive and Endo H-insensitive structure. N-Glycan profiling of total proteins from alg3 mutants exhibited a unique structural profile, alg3 has rare N-glycan structures including Man(3)GlcNAc(2), M4(ER), M5(ER) and GlcM5(ER), which are not usually detected in Arabidopsis, and a much less amount of complex-type N-glycan than that in wild type. Interestingly, despite protein N-glycosylation differences compared with wild type, alg3 showed no obvious phenotype under normal and high temperature or salt/osmotic stress conditions. These results indicate that AtALG3 is a critical factor for mature N-glycosylation of proteins, but not essential for cell viability and growth in Arabidopsis.

摘要

核心寡糖 Glc(3)Man(9)GlcNAc(2)是由一系列膜结合糖基转移酶在内质网 (ER) 中作为脂连接的糖基化的多萜醇焦磷酸连接聚糖组装而成。这个组装途径的第一步是在 ER 腔侧由 ALG3(天冬酰胺连接糖基化 3)介导的,这是真核细胞中高度保守的反应。与酿酒酵母 ALG 基因家族的互补遗传学和生物信息学方法比较,使我们能够从其他物种中鉴定出 ALG3。在拟南芥中,AtALG3(At2g47760)被鉴定为α1,3-甘露糖基转移酶。互补分析表明,AtALG3 挽救了酵母 ALG3 缺陷突变体的温度敏感表型、脂连接寡糖的组装和蛋白质的低聚糖基化。在拟南芥 ALG3 突变体中,合成了不成熟的脂连接寡糖结构 M5(ER),并用于蛋白质 N-糖基化,导致随后的成熟被阻断,形成具有伴刀豆球蛋白亲和活性和内-Endo H 不敏感结构。alg3 突变体总蛋白的 N-聚糖谱表现出独特的结构谱,alg3 具有罕见的 N-聚糖结构,包括 Man(3)GlcNAc(2)、M4(ER)、M5(ER)和 GlcM5(ER),这些结构通常在拟南芥中检测不到,并且与野生型相比,复杂型 N-聚糖的含量要少得多。有趣的是,尽管与野生型相比,alg3 蛋白的 N-糖基化存在差异,但在正常和高温或盐/渗透胁迫条件下,alg3 没有明显的表型。这些结果表明,AtALG3 是蛋白质成熟 N-糖基化的关键因素,但不是拟南芥细胞存活和生长所必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验