Institut de Physique de Rennes, Equipe Astrochimie Expérimentale UMR 6251 du CNRS-Université de Rennes 1, Bât. 11c, Campus de Beaulieu, 35042 Rennes Cedex, France.
Phys Chem Chem Phys. 2010 Apr 21;12(15):3666-76. doi: 10.1039/b907154g. Epub 2009 Sep 25.
The kinetics of the reactions of the linear butadiynyl radical, C4H (CCCCH), with methane, ethane, propane and butane have been studied over the temperature range of 39-300 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. The rate coefficients, except for the reaction with methane, show a negative temperature dependence and can be fitted with the following expressions over the temperature range of this study: k(C2H6) = 0.289 x 10(-10) (T/298 K)(-1.23) exp(-24.8 K/T) cm3 molecule(-1) s(-1); k(C3H8) = 1.06 x 10(-10) (T/298 K)(-1.36) exp(-56.9 K/T) cm3 molecule(-1) s(-1); k(C4H10) = 2.93 x 10(-10) (T/298 K)(-1.30) exp(-90.1 K/T) cm3 molecule(-1) s(-1). The rate coefficients for the reaction with methane were measured only at 200 K and 300 K yielding a positive temperature dependence: k(CH4) = 1.63 x 10(-11) exp(-610 K/T) cm3 molecule(-1) s(-1). Possible reaction mechanisms and product channels are discussed in detail for each of these reactions. Potential implications of these results for models of low temperature chemical environments, in particular cold interstellar clouds and planetary atmospheres such as that of Titan, are considered.
线性丙炔基自由基(C4H(CCCCH))与甲烷、乙烷、丙烷和丁烷的反应动力学在 39-300 K 的温度范围内使用 CRESU(Cinétique de Réaction en Ecoulement Supersonique Uniforme 或反应动力学在均匀超声速流中)装置与脉冲激光光解-激光诱导荧光技术相结合进行了研究。除与甲烷的反应外,速率系数呈现负温度依赖性,并且可以在本研究温度范围内用以下表达式拟合:k(C2H6)= 0.289 x 10(-10)(T/298 K)(-1.23) exp(-24.8 K/T) cm3 分子(-1) s(-1);k(C3H8)= 1.06 x 10(-10)(T/298 K)(-1.36) exp(-56.9 K/T) cm3 分子(-1) s(-1);k(C4H10)= 2.93 x 10(-10)(T/298 K)(-1.30) exp(-90.1 K/T) cm3 分子(-1) s(-1)。与甲烷的反应速率系数仅在 200 K 和 300 K 下测量,呈现正温度依赖性:k(CH4)= 1.63 x 10(-11) exp(-610 K/T) cm3 分子(-1) s(-1)。详细讨论了每种反应的可能反应机制和产物通道。考虑了这些结果对低温化学环境模型(特别是冷星际云)和行星大气(如泰坦)的潜在影响。