Lehrstuhl für Zellbiophysik E27, Technische Universität München, Garching, Germany.
Lab Chip. 2010 Apr 21;10(8):1025-9. doi: 10.1039/b920221h. Epub 2010 Feb 4.
Here we show that transient flow of Newtonian fluids in viscoelastic PDMS microfluidic channels can be described by a diffusive pressure spreading mechanism analogous to the electric telegrapher's equation. The pressure diffusion constant D(p) = 1/R(x)C(x) of a channel with length l is determined by the hydrodynamic resistance R(x) and capacitance C(x) per unit length of the channel. l(2)/D(p) sets the timescale for the transmission of pressure steps along the channel and the relaxation after a pressure step in steady state flow. For oscillatory flows, the channel acts as a low-pass filter with a cutoff frequency omega(cutoff) = 2piD(p)l(-2), so that pressure and flow rate pulses disperse and get smoothed while they travel along the channel. The combination of different microparticle tracking techniques allows the determination of pressure and flow profiles at any point in the channel and excellent agreement with theoretical predictions is obtained.
在这里,我们展示了牛顿流体在粘弹性 PDMS 微流道中的瞬态流动可以用类似于电报员方程的扩散压力传播机制来描述。长度为 l 的通道的压力扩散常数 D(p) = 1/R(x)C(x) 由通道的每单位长度的流体动力阻力 R(x) 和电容 C(x) 决定。l(2)/D(p) 确定了压力阶跃沿通道传播的时间尺度和稳态流动后压力阶跃的弛豫时间。对于振荡流,通道充当具有截止频率 omega(cutoff) = 2piD(p)l(-2) 的低通滤波器,因此压力和流速脉冲在沿通道传输时会分散和平滑。不同的微粒子跟踪技术的组合允许在通道中的任何点确定压力和流速分布,并且与理论预测非常吻合。