Suppr超能文献

受生物启发的微流体学:综述

Bio-inspired microfluidics: A review.

作者信息

Raj M Kiran, Priyadarshani Jyotsana, Karan Pratyaksh, Bandyopadhyay Saumyadwip, Bhattacharya Soumya, Chakraborty Suman

机构信息

Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.

Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium.

出版信息

Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.

Abstract

Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.

摘要

生物微流体学作为微流体学的一个子领域,其灵感来源于自然界的几个理念。然而,尽管其基本灵感可能源自生物界,但要将所有相关的基本功能转化为人工工程框架并非易事。在此,我们通过利用实验和模拟工具的整合来深入研究工程与生物学的界面,回顾受生物启发的微流体系统的最新进展。随后将讨论“芯片上”技术的发展及其多种应用,以及材料和制造技术的相关进步。我们还建议了研究的新方向,包括将数据驱动建模(如人工智能和机器学习)与基于物理的范式进行融合,以便在充分考虑个性化特征的情况下,在合成生物芯片上构建人类生理复制品。这些可能有助于在人工工程生物芯片上进行生理复制疾病建模,并以加快的速度推进药物开发和筛选,同时尽量减少动物和人体试验。

相似文献

1
Bio-inspired microfluidics: A review.
Biomicrofluidics. 2023 Sep 27;17(5):051503. doi: 10.1063/5.0161809. eCollection 2023 Sep.
2
Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip.
Micromachines (Basel). 2020 Jun 18;11(6):599. doi: 10.3390/mi11060599.
3
High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
Acta Biomater. 2016 Apr 1;34:1-20. doi: 10.1016/j.actbio.2015.09.009. Epub 2015 Sep 8.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
Organs-on-a-Chip Module: A Review from the Development and Applications Perspective.
Micromachines (Basel). 2018 Oct 22;9(10):536. doi: 10.3390/mi9100536.
6
Implantable microfluidics: methods and applications.
Analyst. 2023 Sep 25;148(19):4637-4654. doi: 10.1039/d3an00981e.
7
Bio-microfluidics: biomaterials and biomimetic designs.
Adv Mater. 2010 Jan 12;22(2):249-60. doi: 10.1002/adma.200900821.
8
Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
Biomed Mater. 2016 Mar 4;11(2):022001. doi: 10.1088/1748-6041/11/2/022001.
9
Biomimetic Approaches Toward Smart Bio-hybrid Systems.
Nano Res. 2018 Jun;11(6):3009-3030. doi: 10.1007/s12274-018-2004-1. Epub 2018 May 22.
10
Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies.
Adv Healthc Mater. 2016 Oct;5(19):2459-2480. doi: 10.1002/adhm.201600439. Epub 2016 Aug 22.

引用本文的文献

1
Microfluidics and nanofluidics in India - some recent advancements and futuristic perspective.
Biomicrofluidics. 2025 Jul 1;19(4):040403. doi: 10.1063/5.0279173. eCollection 2025 Jul.
2
Hierarchically Structured and Tunable Hydrogel Patches: Design, Characterization, and Application.
Small. 2025 Jan;21(3):e2407311. doi: 10.1002/smll.202407311. Epub 2024 Nov 20.

本文引用的文献

2
Interplay between materials and microfluidics.
Nat Rev Mater. 2017 May;2(5). doi: 10.1038/natrevmats.2017.16. Epub 2017 Apr 20.
3
Droplet Impact Dynamics on Biomimetic Replica of Yellow Rose Petals: Rebound to Micropinning Transition.
Langmuir. 2023 May 2;39(17):6051-6060. doi: 10.1021/acs.langmuir.3c00063. Epub 2023 Apr 17.
4
Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate.
J Colloid Interface Sci. 2023 Jun 15;640:246-260. doi: 10.1016/j.jcis.2023.02.089. Epub 2023 Feb 18.
5
Upscaling Mixing-Controlled Reactions in Unsaturated Porous Media.
Transp Porous Media. 2023;146(1-2):177-196. doi: 10.1007/s11242-021-01710-2. Epub 2021 Nov 9.
6
A universal capillary-deflection based adhesion measurement technique.
J Colloid Interface Sci. 2023 Jan 15;630(Pt A):322-333. doi: 10.1016/j.jcis.2022.09.140. Epub 2022 Oct 1.
7
Capillary pressure mediated long-term dynamics of thin soft films.
J Colloid Interface Sci. 2022 Dec 15;628(Pt B):788-797. doi: 10.1016/j.jcis.2022.08.075. Epub 2022 Aug 17.
8
Magnetic-Driven Hydrogel Microrobots Selectively Enhance Synthetic Lethality in MTAP-Deleted Osteosarcoma.
Front Bioeng Biotechnol. 2022 Jul 6;10:911455. doi: 10.3389/fbioe.2022.911455. eCollection 2022.
9
Targeting Magnetic Nanoparticles in Physiologically Mimicking Tissue Microenvironment.
ACS Appl Mater Interfaces. 2022 Jul 20;14(28):31689-31701. doi: 10.1021/acsami.2c07246. Epub 2022 Jul 5.
10
Development of Silk Fibroin Scaffolds by Using Indirect 3D-Bioprinting Technology.
Micromachines (Basel). 2021 Dec 28;13(1):43. doi: 10.3390/mi13010043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验