Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan.
Inorg Chem. 2010 May 3;49(9):4186-93. doi: 10.1021/ic902417m.
A new ruthenium(II)-gold(I) dyad, Ru(bpy)(2){5-{(PPh(3))-Au-C[tripe bond]C}-phen}(2) (2), with a different substituted site compared to Ru(bpy)(2){3-{(PPh(3))-Au-C[triple bond]C}-phen}(2) (1), and a triad, Ru(bpy)(2){3,6-bis{(PPh(3))-Au-C[triple bond]C}-phen}(2) (3), with an unsymmetric diethynylphenanthroline relative to Ru(bpy)(2){3,8-bis{(PPh(3))-Au-C[triple bond]C}-phen}(2) (4) have been prepared. These four ruthenium(II)-gold(I) compounds showed typical metal-to-ligand charge-transfer (MLCT) absorption bands in the 400-550 nm region and a lowest energy pi-pi* absorption involved with the gold(I) perturbation in the 300-400 nm region. Broad emission bands assignable to the triplet MLCT transition were definitely observed in all compounds, indicating that the hybrid architecture constructed with Ru(II)-polypyridyl and Au(I)-ethynyl units converts the blue-green gold(I) perturbed pi-pi* phosphorescence into an orange MLCT-based emission. The transient absorption difference spectra of four compounds showed the difference in the electron transfer process between 2 and other compounds 1, 3, and 4 under the excited state. Ru(II)-Au(I) compounds except for 2 receive the supposed charge injection from a ruthenium center to an extended pi-conjugated ethynyl-substituted phenanthroline, which contains one or two gold(I) organometallic unit(s), while 2 undergoes the electron transfer process from the ruthenium center not to the 5-ethynylphenanthroline but to one of the bipyridyl ligands under the excited state. This hypothesis is supported by the deflection of the spots of 2 and Ru(bpy)(3)(2) from a linear correlation line in a plot of E(0-0) versus DeltaE(1/2), which was based on the electrochemical and emission data of Ru(II)-Au(I) compounds and mononuclear ruthenium(II) polypyridyl complexes.
一种新的钌(II)-金(I)偶联物,Ru(bpy)(2){5-{(PPh(3))-Au-C[tripe bond]C}-phen}(2) (2),与Ru(bpy)(2){3-{(PPh(3))-Au-C[triple bond]C}-phen}(2) (1)相比,具有不同的取代位点,以及三联体,Ru(bpy)(2){3,6-bis{(PPh(3))-Au-C[triple bond]C}-phen}(2) (3),与Ru(bpy)(2){3,8-bis{(PPh(3))-Au-C[triple bond]C}-phen}(2) (4)相比,具有不对称的二乙炔基菲咯啉,这些钌(II)-金(I)化合物在 400-550nm 区域显示出典型的金属-配体电荷转移(MLCT)吸收带,并且在 300-400nm 区域涉及金(I)的最低能量 pi-pi吸收。所有化合物中都明显观察到可归因于三重态 MLCT 跃迁的宽发射带,表明构建的钌(II)-多吡啶基和金(I)-乙炔基单元的混合架构将蓝色绿色金(I)受扰的 pi-pi磷光转化为橙色 MLCT 基发射。四种化合物的瞬态吸收差光谱显示,在激发态下,2 与其他化合物 1、3 和 4 之间的电子转移过程存在差异。除了 2 之外的 Ru(II)-Au(I)化合物从钌中心接收假定的电荷注入到扩展的含有一个或两个金(I)有机金属单元的乙炔基取代的菲咯啉中,而 2 在激发态下经历电子转移过程,而不是从钌中心转移到 5-乙炔基菲咯啉,而是转移到一个二吡啶配体中。这一假设得到了 2 和Ru(bpy)(3)(2)在以 Ru(II)-Au(I)化合物和单核钌(II)多吡啶配合物的电化学和发射数据为基础的 E(0-0)与 DeltaE(1/2)的关系图中偏离线性相关线的斑点的支持,。