Arita Chikashi
Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051119. doi: 10.1103/PhysRevE.80.051119. Epub 2009 Nov 20.
We introduce an extension of the M/M/1 queueing process with a spatial structure and excluded-volume effect. The rule of particle hopping is the same as for the totally asymmetric simple exclusion process (TASEP). A stationary-state solution is constructed in a slightly arranged matrix product form of the open TASEP. We obtain the critical line that separates the parameter space depending on whether the model has the stationary state. We calculate the average length of the model and the number of particles and show the monotonicity of the probability of the length in the stationary state. We also consider a generalization of the model with backward hopping of particles allowed and an alternate joined system of the M/M/1 queueing process and the open TASEP.
我们引入了具有空间结构和排阻体积效应的M/M/1排队过程的扩展。粒子跳跃规则与完全非对称简单排阻过程(TASEP)相同。以开放TASEP的略微排列的矩阵积形式构造了一个稳态解。我们得到了根据模型是否具有稳态来分隔参数空间的临界线。我们计算了模型的平均长度和粒子数,并展示了稳态下长度概率的单调性。我们还考虑了允许粒子反向跳跃的模型推广以及M/M/1排队过程和开放TASEP的交替连接系统。