Suppr超能文献

连续时间随机游走的积分微分扩散方程。

Integrodifferential diffusion equation for continuous-time random walk.

作者信息

Fa Kwok Sau, Wang K G

机构信息

Departamento de Física, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 1):011126. doi: 10.1103/PhysRevE.81.011126. Epub 2010 Jan 21.

Abstract

In this paper, we present an integrodifferential diffusion equation for continuous-time random walk that is valid for a generic waiting time probability density function. Using this equation, we also study diffusion behaviors for a couple of specific waiting time probability density functions such as exponential and a combination of power law and generalized Mittag-Leffler function. We show that for the case of the exponential waiting time probability density function, a normal diffusion is generated and the probability density function is Gaussian distribution. In the case of the combination of a power law and generalized Mittag-Leffler waiting probability density function, we obtain the subdiffusive behavior for all the time regions from small to large times and probability density function is non-Gaussian distribution.

摘要

在本文中,我们提出了一个用于连续时间随机游走的积分微分扩散方程,该方程对一般的等待时间概率密度函数均有效。利用此方程,我们还研究了几种特定等待时间概率密度函数(如指数函数以及幂律与广义米塔格 - 莱夫勒函数的组合)的扩散行为。我们表明,对于指数等待时间概率密度函数的情况,会产生正常扩散,且概率密度函数为高斯分布。在幂律与广义米塔格 - 莱夫勒等待概率密度函数组合的情况下,我们在从小时间到大时间的所有时间区域都得到了亚扩散行为,且概率密度函数为非高斯分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验