Martin Elliot, Shreim Amer, Paczuski Maya
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016109. doi: 10.1103/PhysRevE.81.016109. Epub 2010 Jan 22.
We define an activity-dependent branching ratio that allows comparison of different time series X(t). The branching ratio b(x) is defined as b(x)=E[xi(x)/x]. The random variable xi(x) is the value of the next signal given that the previous one is equal to x, so xi(x)=[X(t+1) | X(t)=x]. If b(x)>1, the process is on average supercritical when the signal is equal to x, while if b(x)<1, it is subcritical. For stock prices we find b(x)=1 within statistical uncertainty, for all x, consistent with an "efficient market hypothesis." For stock volumes, solar x-ray flux intensities, and the Bak-Tang-Wiesenfeld (BTW) sandpile model, b(x) is supercritical for small values of activity and subcritical for the largest ones, indicating a tendency to return to a typical value. For stock volumes this tendency has an approximate power-law behavior. For solar x-ray flux and the BTW model, there is a broad regime of activity where b(x) approximately equal 1, which we interpret as an indicator of critical behavior. This is true despite different underlying probability distributions for X(t) and for xi(x). For the BTW model the distribution of xi(x) is Gaussian, for x sufficiently larger than 1, and its variance grows linearly with x. Hence, the activity in the BTW model obeys a central limit theorem when sampling over past histories. The broad region of activity where b(x) is close to one disappears once bulk dissipation is introduced in the BTW model-supporting our hypothesis that it is an indicator of criticality.
我们定义了一个与活动相关的分支比,用于比较不同的时间序列X(t)。分支比b(x)定义为b(x)=E[xi(x)/x]。随机变量xi(x)是在前一个信号等于x的情况下下一个信号的值,即xi(x)=[X(t + 1) | X(t)=x]。如果b(x)>1,当信号等于x时,该过程平均处于超临界状态;而如果b(x)<1,则处于亚临界状态。对于股票价格,我们发现在统计不确定性范围内,对于所有x,b(x)=1,这与“有效市场假说”一致。对于股票成交量、太阳X射线通量强度以及Bak-Tang-Wiesenfeld(BTW)沙堆模型,b(x)在活动值较小时处于超临界状态,在活动值最大时处于亚临界状态,这表明存在回归到典型值的趋势。对于股票成交量,这种趋势具有近似的幂律行为。对于太阳X射线通量和BTW模型,存在一个广泛的活动区域,其中b(x)近似等于1,我们将其解释为临界行为的一个指标。尽管X(t)和xi(x)的潜在概率分布不同,但情况依然如此。对于BTW模型,当x足够大于1时,xi(x)的分布是高斯分布,并且其方差随x线性增长。因此,在对过去历史进行采样时,BTW模型中的活动服从中心极限定理。一旦在BTW模型中引入体耗散,b(x)接近1的广泛活动区域就会消失——这支持了我们关于它是临界性指标的假设。