Poujade Olivier, Peybernes Mathieu
CEA, DAM, DIF, F-91297 Arpajon, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jan;81(1 Pt 2):016316. doi: 10.1103/PhysRevE.81.016316. Epub 2010 Jan 26.
For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the foliated spectra at large scales.
多年来,天体物理学家、等离子体聚变专家和流体物理学家一直对瑞利 - 泰勒湍流混合层感到困惑。特别是,在实验和数值模拟之间观察到了增长率的强烈差异。尽管两种唯象学机制(模式耦合和模式竞争)对这些差异提供了一些见解,但仍缺乏令人信服的理论论据来解释观测值。在本文中,我们给出了一个与两种机制都兼容的增长率解析表达式,该表达式对于在恒定或随时间变化的加速度作用下的自相似、低阿特伍德数瑞利 - 泰勒湍流混合是有效的。这项工作的关键步骤是展示我们在三维数值模拟中突出的叶状平均值和叶状湍流谱。我们表明,瑞利 - 泰勒增长率的精确值不仅取决于加速度历史,而且还与大尺度下叶状谱的幂律指数有关。