Physique et Mécanique des Milieux Hétérogènes, ESPCI & CNRS, 10 rue Vauquelin, 75005 Paris, France.
Phys Rev Lett. 2009 Nov 13;103(20):204301. doi: 10.1103/PhysRevLett.103.204301. Epub 2009 Nov 12.
Wave turbulence in a thin elastic plate is experimentally investigated. By using a Fourier transform profilometry technique, the deformation field of the plate surface is measured simultaneously in time and space. This enables us to compute the wave-vector-frequency (k, omega) Fourier spectrum of the full space-time deformation velocity. In the 3D (k, omega) space, we show that the energy of the motion is concentrated on a 2D surface that represents a nonlinear dispersion relation. This nonlinear dispersion relation is close to the linear dispersion relation. This validates the usual wave-number-frequency change of variables used in many experimental studies of wave turbulence. The deviation from the linear dispersion, which increases with the input power of the forcing, is attributed to weak nonlinear effects. Our technique opens the way for many new extensive quantitative comparisons between theory and experiments of wave turbulence.
我们对薄弹性板中的波湍流进行了实验研究。通过使用傅里叶变换轮廓术技术,我们可以同时在时间和空间上测量板表面的变形场。这使我们能够计算全时空变形速度的波矢-频率(k,ω)傅里叶谱。在 3D(k,ω)空间中,我们表明运动的能量集中在代表非线性色散关系的二维表面上。该非线性色散关系与线性色散关系接近。这验证了许多波湍流实验研究中常用的波数-频率变量变化。与线性色散的偏差随强迫输入功率的增加而增加,归因于弱非线性效应。我们的技术为波湍流的理论和实验之间的许多新的广泛定量比较开辟了道路。