Khajehtourian Romik, Hussein Mahmoud I
Department of Mechanical and Process Engineering, ETH-Zürich, Zürich 8092, Switzerland.
Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80303, USA.
Sci Adv. 2021 Dec 10;7(50):eabl3695. doi: 10.1126/sciadv.abl3695. Epub 2021 Dec 8.
We present a theory for the dispersion of generated harmonics in a traveling nonlinear wave. The harmonics dispersion relation (HDR), derived by the theory, provides direct and exact prediction of the collective harmonics spectrum in the frequency–wave number domain and does so without prior knowledge of the = (, ) solution. It is valid throughout the evolution of a distorting unbalanced wave or the steady-steady propagation of a balanced wave with waveform invariance. The new relation is shown to be a special case of the general nonlinear dispersion relation (NDR), which is also derived. The theory is examined on a diverse range of cases of one-dimensional elastic waves and shown to hold irrespective of the spatial form of the initial wave profile, type and strength of the nonlinearity, and the level of dispersion in the linear limit. Another direct outcome of the general NDR is an analytical condition for soliton synthesis.
我们提出了一种关于行波非线性波中产生谐波色散的理论。该理论推导的谐波色散关系(HDR)在频率 - 波数域中提供了对集体谐波频谱的直接且精确的预测,并且无需事先了解(u = u(x,t))的解。它在扭曲不平衡波的整个演化过程或具有波形不变性的平衡波的稳态传播过程中均有效。新关系被证明是一般非线性色散关系(NDR)的一个特殊情况,该一般非线性色散关系也已推导得出。该理论在多种一维弹性波的情况下进行了检验,结果表明无论初始波形的空间形式、非线性的类型和强度以及线性极限中的色散水平如何,该理论均成立。一般NDR的另一个直接结果是孤子合成的解析条件。