Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, D-53115 Bonn, Germany.
Phys Rev Lett. 2009 Dec 4;103(23):233001. doi: 10.1103/PhysRevLett.103.233001. Epub 2009 Dec 3.
We control the quantum mechanical motion of neutral atoms in an optical lattice by driving microwave transitions between spin states whose trapping potentials are spatially offset. Control of this offset with nanometer precision allows for adjustment of the coupling strength between different motional states, analogous to an adjustable effective Lamb-Dicke factor. This is used both for efficient one-dimensional sideband cooling of individual atoms to a vibrational ground state population of 97% and to drive coherent Rabi oscillation between arbitrary pairs of vibrational states. We further show that microwaves can drive well resolved transitions between motional states in maximally offset, shallow lattices, and thus in principle allow for coherent control of long-range quantum transport.
我们通过驱动自旋态之间的微波跃迁来控制中性原子在光晶格中的量子力学运动,这些自旋态的囚禁势在空间上是偏移的。通过纳米精度控制这种偏移,可以调整不同运动状态之间的耦合强度,类似于可调谐的有效 Lamb-Dicke 因子。这既可以有效地将单个原子的一维边带冷却到振动基态的 97%,也可以驱动任意两个振动态之间的相干 Rabi 振荡。我们还表明,微波可以驱动在最大偏移、浅晶格中的运动状态之间进行很好分辨的跃迁,因此原则上可以实现长程量子输运的相干控制。