Department of Mathematics, University of Michigan, 5860 E. Hall, Ann Arbor, MI 48109.
Math Biosci Eng. 2004 Sep;1(2):267-88. doi: 10.3934/mbe.2004.1.267.
Mathematical models of HIV-1 infection can help interpret drug treatment experiments and improve our understanding of the interplay between HIV-1 and the immune system. We develop and analyze an age- structured model of HIV-1 infection that allows for variations in the death rate of productively infected T cells and the production rate of viral particles as a function of the length of time a T cell has been infected. We show that this model is a generalization of the standard differential equation and of delay models previously used to describe HIV-1 infection, and provides a means for exploring fundamental issues of viral production and death. We show that the model has uninfected and infected steady states, linked by a transcritical bifurcation. We perform a local stability analysis of the nontrivial equilibrium solution and provide a general stability condition for models with age structure. We then use numerical methods to study solutions of our model focusing on the analysis of primary HIV infection. We show that the time to reach peak viral levels in the blood depends not only on initial conditions but also on the way in which viral production ramps up. If viral production ramps up slowly, we find that the time to peak viral load is delayed compared to results obtained using the standard (constant viral production) model of HIV infection. We find that data on viral load changing over time is insufficient to identify the functions specifying the dependence of the viral production rate or infected cell death rate on infected cell age. These functions must be determined through new quantitative experiments.
HIV-1 感染的数学模型可以帮助解释药物治疗实验,并增进我们对 HIV-1 与免疫系统之间相互作用的理解。我们开发并分析了一个 HIV-1 感染的年龄结构模型,该模型允许感染的 T 细胞的死亡率和病毒颗粒的产生率随 T 细胞感染时间的长短而变化。我们证明,该模型是标准微分方程和以前用于描述 HIV-1 感染的时滞模型的推广,为探索病毒产生和死亡的基本问题提供了一种手段。我们证明,该模型具有未感染和感染的稳定状态,由超越临界点分岔连接。我们对非平凡平衡点的局部稳定性进行了分析,并为具有年龄结构的模型提供了一般的稳定性条件。然后,我们使用数值方法研究了我们模型的解,重点分析了原发性 HIV 感染。我们表明,血液中达到病毒峰值水平的时间不仅取决于初始条件,还取决于病毒产生的上升方式。如果病毒产生的上升缓慢,我们发现与使用 HIV 感染的标准(恒定病毒产生)模型获得的结果相比,病毒载量达到峰值的时间会延迟。我们发现,随着时间的推移,病毒载量变化的数据不足以确定指定病毒产生率或感染细胞死亡率随感染细胞年龄变化的函数。这些函数必须通过新的定量实验来确定。