Biomedical Engineering Department, Bucknell University, Lewisburg, Pennsylvania, USA.
Biophys J. 2010 Apr 7;98(7):1119-28. doi: 10.1016/j.bpj.2009.12.4281.
We have previously shown in experimental cardiac cell monolayers that rapid point pacing can convert basic functional reentry (single spiral) into a stable multiwave spiral that activates the tissue at an accelerated rate. Here, our goal is to further elucidate the biophysical mechanisms of this rate acceleration without the potential confounding effects of microscopic tissue heterogeneities inherent to experimental preparations. We use computer simulations to show that, similar to experimental observations, single spirals can be converted by point stimuli into stable multiwave spirals. In multiwave spirals, individual waves collide, yielding regions with negative wavefront curvature. When a sufficient excitable gap is present and the negative-curvature regions are close to spiral tips, an electrotonic spread of excitatory currents from these regions propels each colliding spiral to rotate faster than the single spiral, causing an overall rate acceleration. As observed experimentally, the degree of rate acceleration increases with the number of colliding spiral waves. Conversely, if collision sites are far from spiral tips, excitatory currents have no effect on spiral rotation and multiple spirals rotate independently, without rate acceleration. Understanding the mechanisms of spiral rate acceleration may yield new strategies for preventing the transition from monomorphic tachycardia to polymorphic tachycardia and fibrillation.
我们之前在实验性心脏细胞单层中表明,快速起搏点起搏可以将基本功能性折返(单螺旋)转化为稳定的多波螺旋,从而以加速的速度激活组织。在这里,我们的目标是进一步阐明这种速率加速的生物物理机制,而不会受到实验制剂中固有微观组织异质性的潜在混杂影响。我们使用计算机模拟表明,类似于实验观察,单个螺旋可以通过点刺激转化为稳定的多波螺旋。在多波螺旋中,各个波相互碰撞,产生具有负波前曲率的区域。当存在足够的可兴奋间隙并且负曲率区域接近螺旋尖端时,来自这些区域的兴奋性电流的电紧张传播会推动每个碰撞螺旋比单个螺旋更快地旋转,导致整体速率加速。如实验观察到的,速率加速的程度随碰撞的螺旋波的数量而增加。相反,如果碰撞部位远离螺旋尖端,则兴奋性电流对螺旋旋转没有影响,多个螺旋独立旋转,没有速率加速。了解螺旋速率加速的机制可能为防止从单形性心动过速向多形性心动过速和纤颤的转变提供新的策略。