Suppr超能文献

钾通道阻滞的致心律失常反应。多形性快速性心律失常的数值研究。

Proarrhythmic response to potassium channel blockade. Numerical studies of polymorphic tachyarrhythmias.

作者信息

Starmer C F, Romashko D N, Reddy R S, Zilberter Y I, Starobin J, Grant A O, Krinsky V I

机构信息

Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Circulation. 1995 Aug 1;92(3):595-605. doi: 10.1161/01.cir.92.3.595.

Abstract

BACKGROUND

Prompted by the results of CAST results, attention has shifted from class I agents that primarily block sodium channels to class III agents that primarily block potassium channels for pharmacological management of certain cardiac arrhythmias. Recent studies demonstrated that sodium channel blockade, while antiarrhythmic at the cellular level, was inherently proarrhythmic in the setting of a propagating wave front as a result of prolongation of the vulnerable period during which premature stimulation can initiate reentrant activation. From a theoretical perspective, sodium (depolarizing) and potassium (repolarizing) currents are complementary so that if antiarrhythmic and proarrhythmic properties are coupled to modulation of sodium currents, then antiarrhythmic and proarrhythmic properties might similarly be coupled to modulation of potassium currents. The purpose of the present study was to explore the role of repolarization currents during reentrant excitation.

METHODS AND RESULTS

To assess the generic role of repolarizing currents during reentry, we studied the responses of a two-dimensional array of identical excitable cells based on the FitzHugh-Nagumo model, consisting of a single excitation (sodium-like) current and a single recovery (potassium-like) current. Spiral wave reentry was initiated by use of S1S2 stimulation, with the delay timed to occur within the vulnerable period (VP). While holding the sodium conductance constant, the potassium conductance (gK) was reduced from 1.13 to 0.70 (arbitrary units), producing a prolongation of the action potential duration (APD). When gK was 1.13, the tip of the spiral wave rotated around a small, stationary, unexcited region and the computed ECG was monomorphic. As gK was reduced, the APD was prolonged and the unexcited region became mobile (nonstationary), such that the tip of the spiral wave inscribed an outline similar to a multipetaled flower; concomitantly, the computed ECG became progressively more polymorphic. The degree of polymorphism was related to the APD and the configuration of the nonstationary spiral core.

CONCLUSIONS

Torsadelike (polymorphic) ECGs can be derived from spiral wave reentry in a medium of identical cells. Under normal conditions, the spiral core around which a reentrant wave front rotates is stationary. As the balance of repolarizing currents becomes less outward (eg, secondary to potassium channel blockade), the APD is prolonged. When the wavelength (APD.velocity) exceeds the perimeter of the stationary unexcited core, the core will become unstable, causing spiral core drift. Large repolarizing currents shorten the APD and result in a monomorphic reentrant process (stationary core), whereas smaller currents prolong the APD and amplify spiral core instability, resulting in a polymorphic process. We conclude that, similar to sodium channel blockade, the proarrhythmic potential of potassium channel blockade in the setting of propagation may be directly linked to its cellular antiarrhythmic potential, ie, arrhythmia suppression resulting from a prolonged APD may, on initiation of a reentrant wave front, destabilize the core of a rotating spiral, resulting in complex motion (precession) of the spiral tip around a nonstationary region of unexcited cells. In tissue with inhomogeneities, core instability alters the activation sequence from one reentry cycle to the next and can lead to spiral wave fractination as the wave front collides with inhomogeneous regions. Depending on the nature of the inhomogeneities, wave front fragments may annihilate one another, producing a nonsustained arrhythmia, or may spawn new spirals (multiple wavelets), producing fibrillation and sudden cardiac death.

摘要

背景

受心律失常抑制试验(CAST)结果的推动,对于某些心律失常的药物治疗,关注焦点已从主要阻断钠通道的I类药物转向主要阻断钾通道的III类药物。最近的研究表明,钠通道阻断虽然在细胞水平上具有抗心律失常作用,但在传播波阵面的情况下,由于易损期延长,过早刺激可引发折返激活,本质上具有促心律失常作用。从理论角度来看,钠(去极化)电流和钾(复极化)电流是互补的,因此,如果抗心律失常和促心律失常特性与钠电流的调节相关联,那么抗心律失常和促心律失常特性可能同样与钾电流的调节相关联。本研究的目的是探讨复极化电流在折返激动过程中的作用。

方法与结果

为了评估复极化电流在折返过程中的一般作用,我们基于FitzHugh-Nagumo模型研究了由相同可兴奋细胞组成的二维阵列的反应,该模型由单一的激发(类钠)电流和单一的恢复(类钾)电流组成。使用S1S2刺激引发螺旋波折返,延迟时间设定在易损期(VP)内。在保持钠电导恒定的情况下,钾电导(gK)从1.13降低到0.70(任意单位),导致动作电位时程(APD)延长。当gK为1.13时,螺旋波尖端围绕一个小的、静止的、未兴奋区域旋转,计算得到的心电图是单形的。随着gK降低,APD延长,未兴奋区域变得移动(非静止),使得螺旋波尖端描绘出一个类似于多瓣花的轮廓;与此同时,计算得到的心电图逐渐变得更加多形。多形程度与APD和非静止螺旋核心的形态有关。

结论

扭转型(多形性)心电图可源自相同细胞介质中的螺旋波折返。在正常情况下,折返波阵面围绕其旋转的螺旋核心是静止的。随着复极化电流的平衡向外性减弱(例如,继发于钾通道阻断),APD延长。当波长(APD×速度)超过静止未兴奋核心的周长时,核心将变得不稳定,导致螺旋核心漂移。大的复极化电流缩短APD并导致单形性折返过程(静止核心),而较小的电流延长APD并放大螺旋核心不稳定性,导致多形性过程。我们得出结论,与钠通道阻断类似,在传播情况下钾通道阻断的促心律失常潜力可能与其细胞抗心律失常潜力直接相关,即由延长的APD导致的心律失常抑制在折返波阵面起始时,可能会使旋转螺旋的核心不稳定,导致螺旋尖端围绕未兴奋细胞的非静止区域进行复杂运动(进动)。在具有不均匀性的组织中,核心不稳定性会改变从一个折返周期到下一个折返周期的激活序列,并可能导致波阵面与不均匀区域碰撞时螺旋波破碎。根据不均匀性的性质,波阵面片段可能相互湮灭,产生非持续性心律失常,或者可能产生新的螺旋(多个小波),导致颤动和心源性猝死。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验