Suppr超能文献

一种关于狄利克雷边界条件和分布时滞的反应扩散Cohen-Grossberg神经网络稳定性分析的线性矩阵不等式方法。

An LMI approach to stability analysis of reaction-diffusion Cohen-Grossberg neural networks concerning Dirichlet boundary conditions and distributed delays.

作者信息

Wang Zhanshan, Zhang Huaguang, Li Ping

机构信息

School of Information Science and Engineering, Northeastern University, Shenyang 110004, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2010 Dec;40(6):1596-606. doi: 10.1109/TSMCB.2010.2043095. Epub 2010 Apr 5.

Abstract

The global asymptotic stability problem for a class of reaction-diffusion Cohen-Grossberg neural networks with both time-varying delay and infinitely distributed delay is investigated under Dirichlet boundary conditions. Instead of using the M-matrix method and the algebraic inequality method, under some suitable assumptions and using a matrix decomposition method, we adopt the linear matrix inequality method to propose two sufficient stability conditions for the concerned neural networks with Dirichlet boundary conditions and different kinds of activation functions, respectively. The obtained results are easy to check and improve upon the existing stability results. Two examples are given to demonstrate the effectiveness of the obtained results.

摘要

在狄利克雷边界条件下,研究了一类具有时变延迟和无限分布延迟的反应扩散Cohen-Grossberg神经网络的全局渐近稳定性问题。我们不使用M矩阵方法和代数不等式方法,而是在一些合适的假设下,采用矩阵分解方法,并运用线性矩阵不等式方法,分别针对具有狄利克雷边界条件且激活函数不同的相关神经网络,提出了两个充分的稳定性条件。所得结果易于检验,且改进了现有的稳定性结果。给出了两个例子来证明所得结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验