Suppr超能文献

一种用于具有时变延迟的神经网络指数稳定性分析的新方法。

A new approach to exponential stability analysis of neural networks with time-varying delays.

作者信息

Xu Shengyuan, Lam James

机构信息

Department of Automation, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.

出版信息

Neural Netw. 2006 Jan;19(1):76-83. doi: 10.1016/j.neunet.2005.05.005. Epub 2005 Sep 8.

Abstract

This paper considers the problem of exponential stability analysis of neural networks with time-varying delays. The activation functions are assumed to be globally Lipschitz continuous. A linear matrix inequality (LMI) approach is developed to derive sufficient conditions ensuring the delayed neural network to have a unique equilibrium point, which is globally exponentially stable. The proposed LMI conditions can be checked easily by recently developed algorithms solving LMIs. Examples are provided to demonstrate the reduced conservativeness of the proposed results.

摘要

本文考虑了具有时变延迟的神经网络的指数稳定性分析问题。假设激活函数是全局Lipschitz连续的。开发了一种线性矩阵不等式(LMI)方法来推导确保延迟神经网络具有唯一平衡点且全局指数稳定的充分条件。所提出的LMI条件可以通过最近开发的求解LMI的算法轻松检验。给出了例子以证明所提结果降低了保守性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验