Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Center for the Study of Biological Complexity, Richmond, Virginia, USA.
SAR QSAR Environ Res. 2010 Jan 1;21(1):77-102. doi: 10.1080/10629360903568580.
The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk.
生物系统动力学的建模传统上是通过常微分方程(ODE)来进行的。然而,当涉及到基因、蛋白质和代谢物的细胞内网络时,这种方法受到网络复杂性和缺乏实验动力学参数的限制。这为其他建模技术(如元胞自动机(CA)和基于代理的建模(ABM))开辟了新的领域。本文综述了分子生物学中网络动力学这一新兴研究领域。本文讨论了 CA 技术的基础知识,并列出了大量相关的软件和网站。通过丝裂原活化蛋白激酶(MAPK)信号通路、FAS 配体(FASL)诱导和 Bcl-2 相关凋亡的案例研究,详细说明了 CA 在生化反应网络中的应用。本文展示了 CA 方法在建模基本途径模式、识别控制途径动力学的方法以及帮助制定抗癌策略方面的潜力。所呈现的 CA 应用的不同路线包括寻找性能最佳的网络基元、分析有效细胞内信号传递和途径串扰的重要性。