Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America.
PLoS One. 2011;6(9):e25306. doi: 10.1371/journal.pone.0025306. Epub 2011 Sep 23.
Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.
扩散在自然界中许多生化反应系统中起着关键作用。在分子拥挤限制粒子间相互作用的细胞和亚细胞隔室中,可以看到扩散行为至关重要的情况。我们研究了一种使用基于代理的建模方法来模拟分子和生物大分子在三维溶液中扩散的计算方法的应用。该方法允许对具有不同性质(如大小、扩散系数和亲和力)的粒子系统以及环境性质(如粘度和几何形状)进行真实建模。使用这些运动概率的模拟产生模仿自然扩散的行为。使用此建模框架,我们模拟了分子拥挤对有效扩散的影响,并使用 Langevin 动力学模拟验证了我们模型的结果,发现它们与先前的实验数据非常吻合。此外,我们研究了该框架的扩展,其中单个离散细胞可以包含多个不同大小的粒子,以突出由于离散化导致的扩散粒子的不自然行为而产生的错误。随后,我们探索了各种算法,这些算法在处理每个细胞中的多个粒子的运动方面有所不同,并提出了一种算法,该算法可以正确容纳每个细胞中具有不同大小的多个粒子,从而复制这些粒子扩散的自然行为。最后,我们使用当前的建模框架研究结构几何形状对细胞细胞骨架中扩散方向的影响,观察到丝状伪足的肌动蛋白丝和片状伪足的分支结构的结构几何形状的平行取向可以在丝状伪足-片状伪足界面处给扩散方向。