Departamento de Química Orgánica e Inorgánica-IUQOEM, Universidad de Oviedo-CSIC, 33071 Oviedo, Spain.
Chemistry. 2010 May 10;16(18):5425-36. doi: 10.1002/chem.200903313.
The cationic cluster complexes Ru(3)(mu-H)(mu-kappa(2)N,C-L(1) Me)(CO)(10) (1(+); HL(1) Me=N-methylpyrazinium), Ru(3)(mu-H)(mu-kappa(2)N,C-L(2) Me)(CO)(10) (2(+); HL(2) Me=N-methylquinoxalinium), and Ru(3)(mu-H)(mu-kappa(2)-N,C-L(3) Me)(CO)(10) (3(+); HL(3) Me=N-methyl-1,5-naphthyridinium), which contain cationic N-heterocyclic ligands, undergo one-electron reduction processes to become short lived, ligand-centered, trinuclear, radical species (1-3) that end in the formation of an intermolecular C--C bond between the ligands of two such radicals, thus leading to neutral hexanuclear derivatives. These dimerization processes are selective, in the sense that they only occur through the exo face of the bridging ligands of trinuclear enantiomers of the same configuration, as they only afford hexanuclear dimers with rac structures (C(2) symmetry). The following are the dimeric products that have been isolated by using cobaltocene as reducing agent: [Ru(6)(mu-H)(2){mu(6)-kappa(4)N(2),C(2)-(L(1) Me)(2)}(CO)(18)] (5; from 1(+)), [Ru(6)(mu-H)(2){mu(6)-kappa(4)N(2),C(2)-(L(2) Me)(2)}(CO)(18)] (6; from 2(+)), and [Ru(6)(mu-H)(2){mu(4)-kappa(8)N(2),C(6)-(L(3) Me)(2)}(CO)(18)] (7; from 3(+)). The structures of the final hexanuclear products depend on the N-heterocyclic ligand attached to the starting materials. Thus, although both trinuclear subunits of 5 and 6 are face-capped by their bridging ligands, the coordination mode of the ligand of 5 is different from that of the ligand of 6. The trinuclear subunits of 7 are edge-bridged by its bridging ligand. In the presence of moisture, the reduction of 3(+) with cobaltocene also affords a trinuclear derivative, [Ru(3)(mu-H)(mu-kappa(2)N,C-L(3') Me)(CO)(10)] (8), whose bridging ligand (L(3') Me) results from the formal substitution of an oxygen atom for the hydrogen atom (as a proton) that in 3(+) is attached to the C(6) carbon atom of its heterocyclic ligand. The results have been rationalized with the help of electrochemical measurements and DFT calculations, which have also shed light on the nature of the odd-electron species, 1-3, and on the regioselectivity of their dimerization processes. It seems that the sort of coupling reactions described herein requires cationic complexes with ligand-based LUMOs.
包含阳离子 N-杂环配体的Ru(3)(μ-H)(μ-κ(2)N,C-L(1) Me)(CO)(10) (1(+); HL(1) Me=N-甲基吡嗪鎓)、Ru(3)(μ-H)(μ-κ(2)N,C-L(2) Me)(CO)(10) (2(+); HL(2) Me=N-甲基喹喔啉鎓)和Ru(3)(μ-H)(μ-κ(2)-N,C-L(3) Me)(CO)(10) (3(+); HL(3) Me=N-甲基-1,5-萘啶鎓)经历单电子还原过程,成为短寿命、配体中心的三核自由基物种(1-3),最终在两个这样的自由基的配体之间形成分子间 C-C 键,从而导致中性六核衍生物。这些二聚化过程是选择性的,因为它们只通过桥联配体的外向面发生,这些桥联配体是相同构型的三核对映异构体,因为它们只提供具有 rac 结构(C(2)对称性)的六核二聚体。使用环戊二烯基合钴作为还原剂,已经分离出以下二聚产物:[Ru(6)(μ-H)(2){μ(6)-κ(4)N(2),C(2)-(L(1) Me)(2)}(CO)(18)] (5; 来自 1(+))、[Ru(6)(μ-H)(2){μ(6)-κ(4)N(2),C(2)-(L(2) Me)(2)}(CO)(18)] (6; 来自 2(+))和[Ru(6)(μ-H)(2){μ(4)-κ(8)N(2),C(6)-(L(3) Me)(2)}(CO)(18)] (7; 来自 3(+))。最终的六核产物的结构取决于与起始材料相连的 N-杂环配体。因此,尽管 5 和 6 的三核亚基都被桥联配体面封端,但 5 的配体的配位模式与 6 的配体不同。7 的三核亚基由其桥联配体边缘桥接。在潮湿的情况下,用环戊二烯基合钴还原 3(+)也会得到一个三核衍生物[Ru(3)(μ-H)(μ-κ(2)N,C-L(3') Me)(CO)(10)] (8),其桥联配体 (L(3') Me) 是由其杂环配体上的氢原子(质子)被氧原子取代而形成的。电化学测量和 DFT 计算的结果解释了 1-3 等奇数电子物种的性质和它们二聚化过程的区域选择性。似乎本文所述的偶联反应需要具有配体基最低未占轨道(LUMO)的阳离子配合物。