Suppr超能文献

大鼠脊髓白质束的多指数 T2、磁化传递和定量组织学。

Multiexponential T2, magnetization transfer, and quantitative histology in white matter tracts of rat spinal cord.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Magn Reson Med. 2010 Apr;63(4):902-9. doi: 10.1002/mrm.22267.

Abstract

Quantitative MRI measures of multiexponential T(2) relaxation and magnetization transfer were acquired from six samples of excised and fixed rat spinal cord and compared with quantitative histology. MRI and histology data were analyzed from six white matter tracts, each of which possessed unique microanatomic characteristics (axon diameter and myelin thickness, in particular) but a relatively constant volume fraction of myelin. The results indicated that multiexponential T(2) relaxation characteristics varied substantially with variation of microanatomy, while the magnetization transfer characteristics remained close to constant. The most-often-cited multiexponential T(2) relaxation metric, myelin water fraction, varied by almost a factor of 2 between two regions with myelin volume fractions that differed by only approximately 12%. Based on the quantitative histology, the proposed explanation for this variation was intercompartmental water exchange, which caused the underestimation of myelin water fraction and T(2) values and is, presumably, a greater factor in white matter regions where axons are small and myelin is thin. In contrast to the multiexponential T(2) relaxation observations, magnetization transfer metrics were relatively constant across white matter tracts and concluded to be relatively insensitive to intercompartmental water exchange.

摘要

从六个切除和固定的大鼠脊髓样本中获取了多指数 T(2)弛豫和磁化传递的定量 MRI 测量值,并与定量组织学进行了比较。对六个白质束的 MRI 和组织学数据进行了分析,每个白质束都具有独特的微观解剖特征(尤其是轴突直径和髓鞘厚度),但髓鞘的体积分数相对恒定。结果表明,多指数 T(2)弛豫特征随微观解剖的变化而有很大差异,而磁化传递特征则保持接近恒定。最常引用的多指数 T(2)弛豫指标,髓鞘水分数,在髓鞘体积分数相差仅约 12%的两个区域之间相差近 2 倍。基于定量组织学,这种变化的原因是隔室间水交换,这导致髓鞘水分数和 T(2)值的低估,并且据推测,在轴突较小和髓鞘较薄的白质区域,这是一个更大的因素。与多指数 T(2)弛豫观察结果相反,磁化传递指标在白质束之间相对恒定,并且被认为对隔室间水交换相对不敏感。

相似文献

3
Two-dimensional magnetization-transfer - CPMG MRI reveals tract-specific signatures in fixed rat spinal cord.
J Magn Reson. 2018 Dec;297:124-137. doi: 10.1016/j.jmr.2018.10.014. Epub 2018 Oct 24.
4
The microstructural correlates of T1 in white matter.
Magn Reson Med. 2016 Mar;75(3):1341-5. doi: 10.1002/mrm.25709. Epub 2015 Apr 28.
6
Characterizing inter-compartmental water exchange in myelinated tissue using relaxation exchange spectroscopy.
Magn Reson Med. 2013 Nov;70(5):1450-9. doi: 10.1002/mrm.24571. Epub 2012 Dec 11.
7
Construction of a rat spinal cord atlas of axon morphometry.
Neuroimage. 2019 Nov 15;202:116156. doi: 10.1016/j.neuroimage.2019.116156. Epub 2019 Sep 3.
8
High-resolution myelin water measurements in rat spinal cord.
Magn Reson Med. 2008 Apr;59(4):796-802. doi: 10.1002/mrm.21527.
9
Multiexponential T2 and magnetization transfer MRI of demyelination and remyelination in murine spinal cord.
Neuroimage. 2009 May 1;45(4):1173-82. doi: 10.1016/j.neuroimage.2008.12.071. Epub 2009 Jan 21.
10
Characterizing white matter damage in rat spinal cord with quantitative MRI and histology.
J Neurotrauma. 2008 Jun;25(6):653-76. doi: 10.1089/neu.2007.0462.

引用本文的文献

1
T contrast variation in human brain at 7 T and its potential contributors.
Imaging Neurosci (Camb). 2025 Jul 7;3. doi: 10.1162/IMAG.a.67. eCollection 2025.
3
Myelin water and tensor-valued diffusion imaging: (How) are they related?
Magn Reson Med. 2025 Nov;94(5):2038-2056. doi: 10.1002/mrm.30620. Epub 2025 Jul 1.
4
Evaluation of diffusion time-dependent changes in radial diffusivity as a surrogate for axon diameter.
Magn Reson Med. 2025 Sep;94(3):1248-1256. doi: 10.1002/mrm.30538. Epub 2025 Apr 28.
5
Interpretation of inhomogeneous magnetization transfer in myelin water using a four-pool model with dipolar reservoirs.
Magn Reson Med. 2025 Jul;94(1):278-292. doi: 10.1002/mrm.30465. Epub 2025 Feb 18.
6
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low-field MRI.
NMR Biomed. 2025 Jan;38(1):e5281. doi: 10.1002/nbm.5281. Epub 2024 Nov 17.
10
Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology.
Front Neurosci. 2023 Aug 11;17:1209521. doi: 10.3389/fnins.2023.1209521. eCollection 2023.

本文引用的文献

3
Myelin water measurement in the spinal cord.
Magn Reson Med. 2009 Apr;61(4):883-92. doi: 10.1002/mrm.21936.
6
High-resolution myelin water measurements in rat spinal cord.
Magn Reson Med. 2008 Apr;59(4):796-802. doi: 10.1002/mrm.21527.
8
Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain.
J Magn Reson Imaging. 2007 Jul;26(1):41-51. doi: 10.1002/jmri.20984.
9
An approach to high resolution diffusion tensor imaging in fixed primate brain.
Neuroimage. 2007 Apr 1;35(2):553-65. doi: 10.1016/j.neuroimage.2006.12.028. Epub 2007 Jan 3.
10
Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology.
Mult Scler. 2006 Dec;12(6):747-53. doi: 10.1177/1352458506070928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验