Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin, Madison, WI, USA.
Geobiology. 2010 Jun 1;8(3):197-208. doi: 10.1111/j.1472-4669.2010.00237.x. Epub 2010 Mar 30.
The inventories and Fe isotope composition of aqueous Fe(II) and solid-phase Fe compounds were quantified in neutral-pH, chemically precipitated sediments downstream of the Iron Mountain acid mine drainage site in northern California, USA. The sediments contain high concentrations of amorphous Fe(III) oxyhydroxides [Fe(III)(am)] that allow dissimilatory iron reduction (DIR) to predominate over Fe-S interactions in Fe redox transformation, as indicated by the very low abundance of Cr(II)-extractable reduced inorganic sulfur compared with dilute HCl-extractable Fe. delta(56)Fe values for bulk HCl- and HF-extractable Fe were approximately 0. These near-zero bulk delta(56)Fe values, together with the very low abundance of dissolved Fe in the overlying water column, suggest that the pyrite Fe source had near-zero delta(56)Fe values, and that complete oxidation of Fe(II) took place prior to deposition of the Fe(III) oxide-rich sediment. Sediment core analyses and incubation experiments demonstrated the production of millimolar quantities of isotopically light (delta(56)Fe approximately -1.5 to -0.5 per thousand) aqueous Fe(II) coupled to partial reduction of Fe(III)(am) by DIR. Trends in the Fe isotope composition of solid-associated Fe(II) and residual Fe(III)(am) are consistent with experiments with synthetic Fe(III) oxides, and collectively suggest an equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III)(am) of approximately -2 per thousand. These Fe(III) oxide-rich sediments provide a model for early diagenetic processes that are likely to have taken place in Archean and Paleoproterozoic marine sediments that served as precursors for banded iron formations. Our results suggest pathways whereby DIR could have led to the formation of large quantities of low-delta(56)Fe minerals during BIF genesis.
对美国加利福尼亚州北部铁山酸性矿山排水区下游中性 pH 值、化学沉淀沉积物中的水合亚铁 (Fe(II)) 和固相铁化合物的储量和 Fe 同位素组成进行了定量分析。这些沉积物中含有高浓度的无定形三价铁氢氧化物 [Fe(III)(am)],这使得异化铁还原 (DIR) 在铁氧化还原转化中比 Fe-S 相互作用更为普遍,这表明与稀 HCl 可提取铁相比,Cr(II)-可提取还原无机硫的丰度非常低。HCl 和 HF 可提取铁的 bulk δ(56)Fe 值约为 0。这些接近零的 bulk δ(56)Fe 值,以及上覆水柱中溶解铁的低丰度,表明黄铁矿铁源的 δ(56)Fe 值接近零,并且在富三价铁氧化物沉积物沉积之前,Fe(II) 完全被氧化。沉积物芯分析和培养实验表明,产生了毫摩尔数量的同位素轻 (δ(56)Fe 约为-1.5 至-0.5 per 千) 的水合亚铁 (Fe(II)),同时 DIR 部分还原了 Fe(III)(am)。与合成三价铁氧化物进行的实验一致,固相结合的 Fe(II)和残留的 Fe(III)(am)的 Fe 同位素组成的趋势表明,水合 Fe(II)和 Fe(III)(am)之间的平衡 Fe 同位素分馏约为-2 per 千。这些富铁氧化物沉积物提供了一个早期成岩过程的模型,这些过程可能发生在太古宙和古元古代的海洋沉积物中,这些沉积物是条带状铁建造的前身。我们的结果表明,DIR 可能导致在 BIF 成因过程中形成大量低 δ(56)Fe 矿物的途径。