Suppr超能文献

人眼黑素视蛋白视网膜神经节细胞对稳态瞳孔反应的贡献。

Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses.

机构信息

Department of Information Science and Biomedical Engineering, Kagoshima University, Kagoshima, Japan.

出版信息

Proc Biol Sci. 2010 Aug 22;277(1693):2485-92. doi: 10.1098/rspb.2010.0330. Epub 2010 Apr 7.

Abstract

The recent discovery of melanopsin-containing retinal ganglion cells (mRGCs) has led to a fundamental reassessment of non-image forming processing, such as circadian photoentrainment and the pupillary light reflex. In the conventional view of retinal physiology, rods and cones were assumed to be the only photoreceptors in the eye and were, therefore, considered responsible for non-image processing. However, signals from mRGCs contribute to this non-image forming processing along with cone-mediated luminance signals; although both signals contribute, it is unclear how these signals are summed. We designed and built a novel multi-primary stimulation system to stimulate mRGCs independently of other photoreceptors using a silent-substitution technique within a bright steady background. The system allows direct measurements of pupillary functions for mRGCs and cones. We observed a significant change in steady-state pupil diameter when we varied the excitation of mRGC alone, with no change in luminance and colour. Furthermore, the change in pupil diameter induced by mRGCs was larger than that induced by a variation in luminance alone: that is, for a bright steady background, the mRGC signals contribute to the pupillary pathway by a factor of three times more than the L- and M-cone signals.

摘要

最近发现含有黑视蛋白的视网膜神经节细胞(mRGCs),这导致人们对非成像处理(如昼夜光适应和瞳孔光反射)进行了根本性的重新评估。在传统的视网膜生理学观点中,视杆细胞和视锥细胞被认为是眼睛中唯一的光感受器,因此被认为负责非成像处理。然而,mRGCs 的信号与视锥介导的亮度信号一起参与了这种非成像处理;尽管这两种信号都有贡献,但目前尚不清楚这些信号是如何相加的。我们设计并构建了一种新型的多原色刺激系统,该系统使用亮稳定背景下的静音替换技术,可以独立于其他光感受器刺激 mRGCs。该系统允许直接测量 mRGCs 和视锥的瞳孔功能。我们观察到,当仅改变 mRGC 的激发时,瞳孔直径在稳态时会发生显著变化,而亮度和颜色没有变化。此外,mRGC 诱导的瞳孔直径变化大于仅由亮度变化引起的瞳孔直径变化:也就是说,对于亮稳定的背景,mRGC 信号对瞳孔通路的贡献比 L 和 M 视锥信号大三倍。

相似文献

1
Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses.
Proc Biol Sci. 2010 Aug 22;277(1693):2485-92. doi: 10.1098/rspb.2010.0330. Epub 2010 Apr 7.
2
Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex.
Ophthalmic Physiol Opt. 2011 Sep;31(5):469-79. doi: 10.1111/j.1475-1313.2011.00846.x. Epub 2011 Jun 6.
3
[Pupil and melanopsin photoreception].
Nippon Ganka Gakkai Zasshi. 2013 Mar;117(3):246-68; discussion 269.
5
Distinct responses of cones and melanopsin-expressing retinal ganglion cells in the human electroretinogram.
J Physiol Anthropol. 2012 Jun 26;31(1):20. doi: 10.1186/1880-6805-31-20.
7
Opponent melanopsin and S-cone signals in the human pupillary light response.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15568-72. doi: 10.1073/pnas.1400942111. Epub 2014 Oct 13.
8
Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision.
Nature. 2008 May 1;453(7191):102-5. doi: 10.1038/nature06829. Epub 2008 Apr 23.
10
Intrinsically photosensitive retinal ganglion cells.
J Neuroophthalmol. 2007 Sep;27(3):195-204. doi: 10.1097/WNO.0b013e31814b1df9.

引用本文的文献

1
Intrinsically photosensitive retinal ganglion cells and visual processing: ipRGCs beyond non-image-forming functions.
Front Neurosci. 2025 Aug 5;19:1635101. doi: 10.3389/fnins.2025.1635101. eCollection 2025.
2
Selective activation of ipRGC modulates working memory performance.
PLoS One. 2025 Jun 30;20(6):e0327349. doi: 10.1371/journal.pone.0327349. eCollection 2025.
4
Clinical Chronobiology: Circadian Rhythms in Health and Disease.
Semin Neurol. 2025 Mar 10. doi: 10.1055/a-2538-3259.
6
Regulation of pupil size in natural vision across the human lifespan.
R Soc Open Sci. 2024 Jun 19;11(6):191613. doi: 10.1098/rsos.191613. eCollection 2024 Jun.
7
Differences in the pupillary responses to evening light between children and adolescents.
J Physiol Anthropol. 2024 Jul 3;43(1):16. doi: 10.1186/s40101-024-00363-6.
8
The Impact of Pupil Constriction on the Relationship Between Melanopic EDI and Melatonin Suppression in Young Adult Males.
J Biol Rhythms. 2024 Jun;39(3):282-294. doi: 10.1177/07487304241226466. Epub 2024 Feb 13.
9
Differences in the Pupillary Responses to Evening Light between Children and Adolescents.
bioRxiv. 2023 Aug 14:2023.08.09.552691. doi: 10.1101/2023.08.09.552691.
10
Daylights with high melanopsin stimulation appear reddish in fovea and greenish in periphery.
PLoS One. 2023 Apr 26;18(4):e0285053. doi: 10.1371/journal.pone.0285053. eCollection 2023.

本文引用的文献

2
Melanopsin bistability: a fly's eye technology in the human retina.
PLoS One. 2009 Jun 24;4(6):e5991. doi: 10.1371/journal.pone.0005991.
3
Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex.
Ophthalmology. 2009 Aug;116(8):1564-73. doi: 10.1016/j.ophtha.2009.02.007. Epub 2009 Jun 5.
4
Pupillary correlates of light-evoked melanopsin activity in humans.
Vision Res. 2008 Mar;48(7):862-71. doi: 10.1016/j.visres.2007.12.016. Epub 2008 Feb 11.
6
Two distinct cone-opponent processes in the L+M luminance pathway.
Vision Res. 2007 Jun;47(14):1839-54. doi: 10.1016/j.visres.2007.03.016. Epub 2007 May 17.
7
Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells.
Vision Res. 2007 Mar;47(7):946-54. doi: 10.1016/j.visres.2006.12.015. Epub 2007 Feb 22.
9
Impaired masking responses to light in melanopsin-knockout mice.
Chronobiol Int. 2003 Nov;20(6):989-99. doi: 10.1081/cbi-120026043.
10
The interpretation of spectral sensitivity curves.
Br Med Bull. 1953;9(1):24-30. doi: 10.1093/oxfordjournals.bmb.a074302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验