Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
Excelitas Technologies, Boulder, CO, USA.
J Physiol Anthropol. 2024 Jul 3;43(1):16. doi: 10.1186/s40101-024-00363-6.
BACKGROUND: In the mammalian retina, intrinsically-photosensitive retinal ganglion cells (ipRGC) detect light and integrate signals from rods and cones to drive multiple non-visual functions including circadian entrainment and the pupillary light response (PLR). Non-visual photoreception and consequently non-visual sensitivity to light may change across child development. The PLR represents a quick and reliable method for examining non-visual responses to light in children. The purpose of this study was to assess differences in the PLRs to blue and red stimuli, measured one hour prior to bedtime, between children and adolescents. METHODS: Forty healthy participants (8-9 years, n = 21; 15-16 years, n = 19) completed a PLR assessment 1 h before their habitual bedtime. After a 1 h dim-light adaptation period (< 1 lx), baseline pupil diameter was measured in darkness for 30 s, followed by a 10 s exposure to 3.0 × 10 photons/cm/s of either red (627 nm) or blue (459 nm) light, and a 40 s recovery in darkness to assess pupillary re-dilation. Subsequently, participants underwent 7 min of dim-light re-adaptation followed by an exposure to the other light condition. Lights were counterbalanced across participants. RESULTS: Across both age groups, maximum pupil constriction was significantly greater (p < 0.001, η = 0.48) and more sustained (p < 0.001, η = 0.41) during exposure to blue compared to red light. For adolescents, the post-illumination pupillary response (PIPR), a hallmark of melanopsin function, was larger after blue compared with red light (p = 0.02, d = 0.60). This difference was not observed in children. Across light exposures, children had larger phasic (p < 0.01, η = 0.20) and maximal (p < 0.01, η = 0.22) pupil constrictions compared to adolescents. CONCLUSIONS: Blue light elicited a greater and more sustained pupillary response than red light in children and adolescents. However, the overall amplitude of the rod/cone-driven phasic response was greater in children than in adolescents. Our findings using the PLR highlight a higher sensitivity to evening light in children compared to adolescents, and continued maturation of the human non-visual photoreception/system throughout development.
背景:在哺乳动物的视网膜中,内在感光的视网膜神经节细胞(ipRGC)可以检测光,并整合来自视杆细胞和视锥细胞的信号,从而驱动多种非视觉功能,包括昼夜节律同步和瞳孔对光反射(PLR)。非视觉光感受器以及相应的对光的非视觉敏感性可能会随着儿童的成长而发生变化。PLR 是一种快速可靠的方法,可以检查儿童对光的非视觉反应。本研究的目的是评估儿童和青少年在睡前一小时测量的蓝色和红色刺激的 PLR 之间的差异。
方法:40 名健康参与者(8-9 岁,n=21;15-16 岁,n=19)在睡前 1 小时完成了 PLR 评估。在暗适应 1 小时(<1 lx)后,在黑暗中测量 30 秒的基础瞳孔直径,然后暴露于 3.0×10 个光子/cm/s 的红色(627nm)或蓝色(459nm)光 10 秒,然后在黑暗中恢复 40 秒以评估瞳孔再扩张。随后,参与者接受 7 分钟的暗适应重新适应,然后暴露于另一种光条件。灯光在参与者之间平衡。
结果:在两个年龄组中,与红色光相比,蓝色光照射时瞳孔的最大收缩幅度更大(p<0.001,η=0.48),持续时间更长(p<0.001,η=0.41)。对于青少年,蓝色光比红光后瞳孔光反射(PIPR)更大,这是黑视蛋白功能的标志(p=0.02,d=0.60)。在儿童中未观察到这种差异。在各种光照条件下,与青少年相比,儿童的相(p<0.01,η=0.20)和最大(p<0.01,η=0.22)瞳孔收缩幅度更大。
结论:与红色光相比,蓝色光在儿童和青少年中引起更大和更持续的瞳孔反应。然而,在儿童中,与视杆细胞和视锥细胞驱动的相性反应的总体幅度大于青少年。我们使用 PLR 的研究结果表明,与青少年相比,儿童对傍晚的光更敏感,并且在整个发育过程中,人类的非视觉光感受器/系统不断成熟。
J Physiol Anthropol. 2024-7-3
Invest Ophthalmol Vis Sci. 2018-10-1
Invest Ophthalmol Vis Sci. 2020-8-3
Acta Ophthalmol. 2017-12
Invest Ophthalmol Vis Sci. 2015-10
Nippon Ganka Gakkai Zasshi. 2013-3
J Physiol Anthropol. 2024-12-26
Clin Exp Ophthalmol. 2022-9
Ophthalmic Physiol Opt. 2021-11
Nat Commun. 2021-8-25
Sci Rep. 2019-3-20