Department of Ecology and Evolutionary Biology, Cornell University, USA.
Mol Biol Evol. 2010 Sep;27(9):2000-13. doi: 10.1093/molbev/msq092. Epub 2010 Apr 7.
Seminal fluid proteins (SFPs) directly influence a wide range of reproductive processes, including fertilization, sperm storage, egg production, and immune response. Like many other reproductive proteins, the molecular evolution of SFPs is generally characterized by rapid and frequently adaptive evolution. However, the evolutionary processes underlying this often-documented pattern have not yet been confidently determined. A robust understanding of the processes governing SFP evolution will ultimately require identifying SFPs and characterizing their evolution in many different taxa, often where only limited genomic resources are available. Here, we report the first comprehensive molecular genetic and evolutionary analysis of SFPs conducted in Lepidoptera (moths and butterflies). We have identified 51 novel SFPs from two species of Heliconius butterflies (Heliconius erato and Heliconius melpomene) by combining "indirect" bioinformatic and expression analyses of expressed sequence tags from male accessory gland and wing tissues with "direct" proteomic analyses of spermatophores. Proteomic analyses identified fewer SFPs than the indirect criteria but gave consistent results. Of 51 SFPs, 40 were identified in both species but fewer than half could be functionally annotated via similarity searches (Blast, IPRscan, etc.). The majority of annotated Heliconius SFPs were predicted to be chymotrypsins. Comparisons of Heliconius SFPs with those from fruit fly, mosquito, honeybee, and cricket suggest that gene turnover is high among these proteins and that SFPs are rarely conserved across insect orders. Pairwise estimates of evolutionary rates between SFPs and nonreproductive proteins show that, on average, Heliconius SFPs are evolving rapidly. At least one of these SFPs is evolving adaptively (dN/dS > 1), implicating a role for positive selection in this rapid evolution. This work establishes a strong precedent for future research on the causes and consequences of reproductive protein evolution in the Lepidoptera. Butterflies and moths have an extremely rich history of organismal research, which will provide an informative ecological context for further molecular evolutionary investigations.
精浆蛋白(SFPs)直接影响广泛的生殖过程,包括受精、精子储存、卵子产生和免疫反应。与许多其他生殖蛋白一样,SFPs 的分子进化通常以快速和频繁的适应性进化为特征。然而,这种经常被记录的模式背后的进化过程尚未被确定。对控制 SFP 进化的过程有一个强有力的理解,最终需要在许多不同的分类群中识别 SFPs 并描述它们的进化,通常在这些分类群中只有有限的基因组资源可用。在这里,我们报告了在鳞翅目(蛾和蝴蝶)中进行的 SFPs 的首次全面分子遗传和进化分析。我们通过结合雄性附腺和翅膀组织的表达序列标签的“间接”生物信息学和表达分析以及精囊的“直接”蛋白质组学分析,从两种海伦娜蝴蝶(海伦娜 erato 和海伦娜 melpomene)中鉴定了 51 种新的 SFPs。蛋白质组学分析鉴定的 SFPs 少于间接标准,但结果一致。在 51 个 SFPs 中,有 40 个在两个物种中都被鉴定出来,但少于一半的 SFPs 可以通过相似性搜索(Blast、IPRscan 等)进行功能注释。大多数注释的海伦娜 SFP 被预测为糜蛋白酶。与果蝇、蚊子、蜜蜂和蟋蟀的 SFPs 比较表明,这些蛋白中的基因转换率很高,而且 SFPs 在昆虫目中很少保守。SFPs 与非生殖蛋白之间的成对进化速率估计表明,平均而言,海伦娜 SFP 进化迅速。这些 SFP 中的至少一个正在适应进化(dN/dS > 1),这表明正选择在这种快速进化中起作用。这项工作为未来在鳞翅目生殖蛋白进化的原因和后果方面的研究奠定了坚实的基础。蝴蝶和飞蛾有着极其丰富的生物研究历史,这将为进一步的分子进化研究提供丰富的生态背景。