Suppr超能文献

基于有限元方法的离子选择膜电极及相关系统的计算机模拟

Computer Simulation of Ion-Selective Membrane Electrodes and Related Systems by Finite-Element Procedures.

作者信息

Morf W E, Pretsch E, De Rooij N F

机构信息

Institute of Microtechnology, University of Neuchâtel, Rue Jaquet-Droz 1, CH-2007 Neuchâtel, Switzerland.

出版信息

J Electroanal Chem (Lausanne). 2007 Apr 1;602(1):43-54. doi: 10.1016/j.jelechem.2006.11.025.

Abstract

A simple but powerful numerical simulation for analyzing the electrochemical behavior of ion-selective membranes and liquid junctions is presented. The computer modeling makes use of a finite-element procedure in the space and time domains, which can be easily processed (e. g., with MS Excel software) without the need for complex mathematical evaluations. It leads to convincing results on the dynamic evolution of concentration profiles, potentials, and fluxes in the studied systems. The treatment accounts for influences of convection, flow, or stirring in the sample solution that act on the boundary diffusion layer and it is even capable of including the effects of an electrolyte flow through the whole system. To minimize the number of arbitrary parameters, interfacial reactions are assumed to be near local equilibrium, and space-charge influences are considered via phase-boundary potential differences. The applicability of the computer simulation is demonstrated for different ion-selective membranes as well as for liquid junctions. The numerical results are in excellent agreement with experimental data.

摘要

本文提出了一种简单而强大的数值模拟方法,用于分析离子选择膜和液接界的电化学行为。该计算机建模在空间和时间域中采用有限元程序,无需复杂的数学计算即可轻松处理(例如,使用MS Excel软件)。它在研究系统中浓度分布、电位和通量的动态演变方面得出了令人信服的结果。该处理方法考虑了样品溶液中对流、流动或搅拌对边界扩散层的影响,甚至能够包括电解质流经整个系统的影响。为了尽量减少任意参数的数量,假设界面反应接近局部平衡,并通过相界电位差考虑空间电荷的影响。计算机模拟在不同离子选择膜以及液接界方面的适用性得到了证明。数值结果与实验数据非常吻合。

相似文献

1
Computer Simulation of Ion-Selective Membrane Electrodes and Related Systems by Finite-Element Procedures.
J Electroanal Chem (Lausanne). 2007 Apr 1;602(1):43-54. doi: 10.1016/j.jelechem.2006.11.025.
3
Overcoming of One More Pitfall in Boundary Element Calculations with Computer Simulations of Ion-Selective Electrode Response.
ACS Omega. 2019 Jan 18;4(1):1617-1622. doi: 10.1021/acsomega.8b02926. eCollection 2019 Jan 31.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
On the nature of liquid junction and membrane potentials.
Phys Chem Chem Phys. 2006 Sep 28;8(36):4200-13. doi: 10.1039/b601668e. Epub 2006 Aug 17.
7
Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
Adv Colloid Interface Sci. 2008 Jun 22;139(1-2):45-61. doi: 10.1016/j.cis.2008.01.007. Epub 2008 Feb 1.
9
Theory and Computer Simulation of the Time-Dependent Selectivity Behavior of Polymeric Membrane Ion-Selective Electrodes.
J Electroanal Chem (Lausanne). 2008 Mar 15;614(1-2):15-23. doi: 10.1016/j.jelechem.2007.10.027.
10
Overcoming Pitfalls in Boundary Elements Calculations with Computer Simulations of Ion Selective Membrane Electrodes.
Anal Chem. 2017 Aug 1;89(15):7828-7831. doi: 10.1021/acs.analchem.7b01777. Epub 2017 Jul 13.

引用本文的文献

1
Selective Ion Capturing via Carbon Nanotubes Charging.
Anal Chem. 2022 May 31;94(21):7455-7459. doi: 10.1021/acs.analchem.2c00797. Epub 2022 May 17.
3
Overcoming of One More Pitfall in Boundary Element Calculations with Computer Simulations of Ion-Selective Electrode Response.
ACS Omega. 2019 Jan 18;4(1):1617-1622. doi: 10.1021/acsomega.8b02926. eCollection 2019 Jan 31.
5
Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model.
J Electroanal Chem (Lausanne). 2010 Feb 15;639(1-2):1-7. doi: 10.1016/j.jelechem.2009.09.031.
6
Theory and Computer Simulation of the Time-Dependent Selectivity Behavior of Polymeric Membrane Ion-Selective Electrodes.
J Electroanal Chem (Lausanne). 2008 Mar 15;614(1-2):15-23. doi: 10.1016/j.jelechem.2007.10.027.
8
Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times.
J Electroanal Chem (Lausanne). 2010 Jan 15;638(2):254-261. doi: 10.1016/j.jelechem.2009.11.007.

本文引用的文献

3
Approaches to Improving the Lower Detection Limit of Polymeric Membrane Ion-Selective Electrodes.
Electroanalysis. 2006 Jul 1;18(13-14):1254-1265. doi: 10.1002/elan.200603539.
4
5
The phase-boundary potential model.
Talanta. 2004 May 10;63(1):3-20. doi: 10.1016/j.talanta.2003.10.006.
6
Ion-selective supported liquid membranes placed under steady-state diffusion control.
Anal Chem. 2005 Dec 1;77(23):7801-9. doi: 10.1021/ac051362y.
7
Pulstrodes: triple pulse control of potentiometric sensors.
J Am Chem Soc. 2004 Sep 1;126(34):10548-9. doi: 10.1021/ja047728q.
9
Pulsed galvanostatic control of ionophore-based polymeric ion sensors.
Anal Chem. 2003 Sep 1;75(17):4541-50. doi: 10.1021/ac034409t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验