Suppr超能文献

计时电位分析法在自然对流条件下测定离子交换膜附近扩散层厚度中的应用。

Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.

作者信息

Larchet C, Nouri S, Auclair B, Dammak L, Nikonenko V

机构信息

Laboratoire des Matériaux Echangeurs d'Ions, Université Paris 12, av du Général de Gaulle, 94010, Créteil, France.

出版信息

Adv Colloid Interface Sci. 2008 Jun 22;139(1-2):45-61. doi: 10.1016/j.cis.2008.01.007. Epub 2008 Feb 1.

Abstract

A brief review of the evolution of the diffusion boundary layer (DBL) conception inspired by the works of Nernst, Levich and Amatore is presented. Experimental methods for studying the DBL in electrode and membrane systems are considered. The electrochemical behaviour of a CM2 cation-exchange membrane in NaCl and KCl solutions is studied by chronopotentiometry at constant under-limiting current. Chronopotentiometric curves are described theoretically by applying the Kedem-Katchalsky equations in differential form to a three-layer system including the membrane and two adjoining DBLs. The conductance coefficients entering the equations are found by treating the results of membrane characterisation: the electrical conductivity, transport numbers of ions and water, electrolyte uptake, as functions of the equilibrium electrolyte solution. The two-phase microheterogeneous model is used for this treatment resulting in presentation of the conductance coefficients as functions of (virtual) electrolyte solution concentration in the membrane. The steady-state DBL thickness (delta) is found by fitting experimental potential drop at sufficiently high times. It is found that delta is proportional to (Delta c)(-0.2), where Delta c is the difference between the electrolyte concentration in the solution bulk and at the interface. This result differs from the Levich equation, which gives the power equal to -0.25 for Delta c. This deviation is explained by the fact that the theory of Levich does not take into account microscopic chaotic convection motion recently described by Amatore et al. It is shown that the treatment of experimental chronopotentiometric curves with the model developed allows one to observe the role of streaming potential in the membrane. Different mechanisms of streaming potential and their effect on the shape of chronopotentiograms are discussed. A simple analytical solution of Navier-Stokes equations applied to natural convection near an infinite vertical ion-exchange membrane is found. It is shown that the formation of DBL induced by electric current is quasi-stationary. This fact allows the empirical expression found earlier and linking delta with Delta c under steady-state conditions to be used in transient regimes. The numerical solution of the non-stationary Kedem-Katchalsky equations together with this empirical expression results in quantitative description of the potential difference (pd) and delta as functions of time in chronopotentiometric experiments. The comparison of theoretical and experimental chronopotentiometric curves shows an excellent agreement, especially for the part after switching off the current. The reasons of a small deviation observed just before the curves attain steady state under a constant current applied are discussed.

摘要

本文简要回顾了受能斯特、列维奇和阿马托雷的研究启发而产生的扩散边界层(DBL)概念的演变。考虑了研究电极和膜系统中DBL的实验方法。通过在恒定欠极限电流下的计时电位法研究了CM2阳离子交换膜在NaCl和KCl溶液中的电化学行为。通过将微分形式的 Kedem-Katchalsky 方程应用于包括膜和两个相邻DBL的三层系统,从理论上描述了计时电位曲线。通过处理膜的表征结果(电导率、离子和水的迁移数、电解质吸收量)作为平衡电解质溶液的函数,来确定方程中的电导系数。采用两相微非均相模型进行此处理,从而将电导系数表示为膜中(虚拟)电解质溶液浓度的函数。通过在足够长的时间拟合实验电位降来确定稳态DBL厚度(δ)。发现δ与(Δc)^(-0.2)成正比,其中Δc是溶液主体和界面处电解质浓度的差值。该结果与列维奇方程不同,列维奇方程给出的幂次对于Δc等于 -0.25。这种偏差的解释是,列维奇理论没有考虑阿马托雷等人最近描述的微观混沌对流运动。结果表明,用所开发的模型处理实验计时电位曲线能够观察到膜中流动电位的作用。讨论了流动电位的不同机制及其对计时电位图形状的影响。找到了应用于无限垂直离子交换膜附近自然对流的纳维 - 斯托克斯方程的简单解析解。结果表明,电流诱导的DBL形成是准稳态的。这一事实使得先前发现的、将稳态条件下的δ与Δc联系起来的经验表达式可用于瞬态情况。非稳态Kedem-Katchalsky方程的数值解与该经验表达式一起,对计时电位实验中电位差(pd)和δ随时间的变化进行了定量描述。理论和实验计时电位曲线的比较显示出极好的一致性,特别是在电流关闭后的部分。讨论了在施加恒定电流下曲线达到稳态之前观察到的小偏差的原因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验