Suppr超能文献

催化位点附近氨基酸取代对耐氧型膜结合[NiFe]氢化酶光谱性质的影响。

Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase.

机构信息

Institut für Chemie, Sekr. PC14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.

出版信息

Chemphyschem. 2010 Apr 26;11(6):1215-24. doi: 10.1002/cphc.200900988.

Abstract

[NiFe] hydrogenases are widespread among microorganisms and catalyze the reversible cleavage of molecular hydrogen. However, only a few bacteria, such as Ralstonia eutropha H16 (Re), synthesize [NiFe] hydrogenases that perform H(2) cycling in the presence of O(2). These enzymes are of special interest for biotechnological applications. To gain further insight into the mechanism(s) responsible for the remarkable O(2) tolerance, we employ FTIR and EPR spectroscopy to study mutant variants of the membrane-bound hydrogenase (MBH) of Re-carrying substitutions of a particular cysteine residue in the vicinity of the [NiFe] active site that is characteristic of O(2)-tolerant membrane-bound [NiFe] hydrogenases. We demonstrate that these MBH variants, despite minor changes in the electronic structure and in the interaction behavior with the embedding protein matrix, display all relevant catalytic and noncatalytic states of the wild-type enzyme, as long as they are still located in the cytoplasmic membrane. Notably, in the oxidized Ni(r)-B state and the fully reduced forms, the CO stretching frequency increases with increasing polarity of the respective amino acid residue at the specific position of the cysteine residue. We purified the MBH mutant protein with a cysteine-to-alanine exchange to apparent homogeneity as dimeric enzyme after detergent solubilization from the membrane. This purified version displays increased oxygen sensitivity, which is reflected by detection of the oxygen-inhibited Ni(u)-A state, an irreversible inactive redox state, and the light-induced Ni(a)-L state even at room temperature.

摘要

[NiFe]氢化酶广泛存在于微生物中,可催化分子氢的可逆裂解。然而,只有少数细菌,如 Ralstonia eutropha H16(Re),能够合成在氧气存在下进行 H2 循环的[NiFe]氢化酶。这些酶在生物技术应用中具有特殊的意义。为了更深入地了解导致其对氧气高度耐受的机制,我们使用傅里叶变换红外光谱(FTIR)和电子顺磁共振(EPR)光谱研究了 Re 中膜结合氢化酶(MBH)的突变变体,这些变体在靠近[NiFe]活性位点的位置上有一个特定半胱氨酸残基的取代,这是对氧气耐受的膜结合[NiFe]氢化酶的特征。我们证明,这些 MBH 变体,尽管在电子结构和与嵌入蛋白基质的相互作用行为上有一些微小的变化,但只要它们仍然位于细胞质膜中,就会显示出野生型酶的所有相关的催化和非催化状态。值得注意的是,在氧化的 Ni(r)-B 态和完全还原的形式中,CO 伸缩频率随着位于半胱氨酸残基特定位置的氨基酸残基极性的增加而增加。我们通过从膜中用去污剂溶解后纯化出具有半胱氨酸到丙氨酸交换的 MBH 突变蛋白,达到明显的均相二聚体酶状态。这种纯化的版本显示出增加的氧气敏感性,这反映在检测到氧气抑制的 Ni(u)-A 态、不可逆的非活性氧化还原态,以及甚至在室温下的光诱导的 Ni(a)-L 态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验