Suppr超能文献

应用于微阵列数据分析的矩阵分解方法。

Matrix factorisation methods applied in microarray data analysis.

作者信息

Kossenkov Andrew V, Ochs Michael F

机构信息

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.

出版信息

Int J Data Min Bioinform. 2010;4(1):72-90. doi: 10.1504/ijdmb.2010.030968.

Abstract

Numerous methods have been applied to microarray data to group genes into clusters that show similar expression patterns. These methods assign each gene to a single group, which does not reflect the widely held view among biologists that most, if not all, genes in eukaryotes are involved in multiple biological processes and therefore will be multiply regulated. Here, we review several methods of matrix factorisation that identify patterns of behaviour in transcriptional response and assign genes to multiple patterns. We focus on these methods rather than traditional clustering methods applied to microarray data, which assign one gene to one cluster.

摘要

众多方法已应用于微阵列数据,以将基因分组为显示相似表达模式的簇。这些方法将每个基因分配到单个组中,这并未反映生物学家中广泛持有的观点,即真核生物中的大多数(如果不是全部)基因都参与多个生物学过程,因此会受到多种调控。在这里,我们回顾了几种矩阵分解方法,这些方法可识别转录反应中的行为模式并将基因分配到多种模式中。我们关注这些方法,而不是应用于微阵列数据的传统聚类方法,传统方法将一个基因分配到一个簇中。

相似文献

1
Matrix factorisation methods applied in microarray data analysis.
Int J Data Min Bioinform. 2010;4(1):72-90. doi: 10.1504/ijdmb.2010.030968.
2
Microarray data mining using landmark gene-guided clustering.
BMC Bioinformatics. 2008 Feb 11;9:92. doi: 10.1186/1471-2105-9-92.
3
cluML: A markup language for clustering and cluster validity assessment of microarray data.
Appl Bioinformatics. 2005;4(3):211-3. doi: 10.2165/00822942-200504030-00006.
4
MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering.
BMC Bioinformatics. 2009 Aug 22;10:260. doi: 10.1186/1471-2105-10-260.
6
Effect of data normalization on fuzzy clustering of DNA microarray data.
BMC Bioinformatics. 2006 Mar 14;7:134. doi: 10.1186/1471-2105-7-134.
7
Towards clustering of incomplete microarray data without the use of imputation.
Bioinformatics. 2007 Jan 1;23(1):107-13. doi: 10.1093/bioinformatics/btl555. Epub 2006 Oct 31.
10
Inferential clustering approach for microarray experiments with replicated measurements.
IEEE/ACM Trans Comput Biol Bioinform. 2009 Oct-Dec;6(4):594-604. doi: 10.1109/TCBB.2008.106.

引用本文的文献

1
Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue.
Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
2
Iterative sub-network component analysis enables reconstruction of large scale genetic networks.
BMC Bioinformatics. 2015 Nov 4;16:366. doi: 10.1186/s12859-015-0768-9.
3
Matrix Factorization for Transcriptional Regulatory Network Inference.
IEEE Symp Comput Intell Bioinforma Comput Biol Proc. 2012 May;2012:387-396. doi: 10.1109/CIBCB.2012.6217256.
4
biDCG: a new method for discovering global features of DNA microarray data via an iterative re-clustering procedure.
PLoS One. 2014 Jul 21;9(7):e102445. doi: 10.1371/journal.pone.0102445. eCollection 2014.
5
Identifying context-specific transcription factor targets from prior knowledge and gene expression data.
IEEE Trans Nanobioscience. 2013 Sep;12(3):142-9. doi: 10.1109/TNB.2013.2263390. Epub 2013 May 16.
6
Matrix factorization for recovery of biological processes from microarray data.
Methods Enzymol. 2009;467:59-77. doi: 10.1016/S0076-6879(09)67003-8.

本文引用的文献

1
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans Pattern Anal Mach Intell. 1984 Jun;6(6):721-41. doi: 10.1109/tpami.1984.4767596.
4
Inferential, robust non-negative matrix factorization analysis of microarray data.
Bioinformatics. 2007 Jan 1;23(1):44-9. doi: 10.1093/bioinformatics/btl550. Epub 2006 Nov 8.
7
LS-NMF: a modified non-negative matrix factorization algorithm utilizing uncertainty estimates.
BMC Bioinformatics. 2006 Mar 28;7:175. doi: 10.1186/1471-2105-7-175.
8
Determination of strongly overlapping signaling activity from microarray data.
BMC Bioinformatics. 2006 Feb 28;7:99. doi: 10.1186/1471-2105-7-99.
9
Biclustering of gene expression data by Non-smooth Non-negative Matrix Factorization.
BMC Bioinformatics. 2006 Feb 17;7:78. doi: 10.1186/1471-2105-7-78.
10
Improving molecular cancer class discovery through sparse non-negative matrix factorization.
Bioinformatics. 2005 Nov 1;21(21):3970-5. doi: 10.1093/bioinformatics/bti653.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验