Suppr超能文献

一种用于检测微阵列时间序列中差异基因表达区间的稳健贝叶斯双样本检验。

A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series.

作者信息

Stegle Oliver, Denby Katherine J, Cooke Emma J, Wild David L, Ghahramani Zoubin, Borgwardt Karsten M

机构信息

Interdepartmental Bioinformatics Group, Max Planck Institute for Developmental Biology, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

出版信息

J Comput Biol. 2010 Mar;17(3):355-67. doi: 10.1089/cmb.2009.0175.

Abstract

Understanding the regulatory mechanisms that are responsible for an organism's response to environmental change is an important issue in molecular biology. A first and important step towards this goal is to detect genes whose expression levels are affected by altered external conditions. A range of methods to test for differential gene expression, both in static as well as in time-course experiments, have been proposed. While these tests answer the question whether a gene is differentially expressed, they do not explicitly address the question when a gene is differentially expressed, although this information may provide insights into the course and causal structure of regulatory programs. In this article, we propose a two-sample test for identifying intervals of differential gene expression in microarray time series. Our approach is based on Gaussian process regression, can deal with arbitrary numbers of replicates, and is robust with respect to outliers. We apply our algorithm to study the response of Arabidopsis thaliana genes to an infection by a fungal pathogen using a microarray time series dataset covering 30,336 gene probes at 24 observed time points. In classification experiments, our test compares favorably with existing methods and provides additional insights into time-dependent differential expression.

摘要

理解负责生物体对环境变化做出反应的调控机制是分子生物学中的一个重要问题。朝着这一目标迈出的首要且重要的一步是检测其表达水平受外部条件改变影响的基因。已经提出了一系列用于在静态以及时间进程实验中测试差异基因表达的方法。虽然这些测试回答了一个基因是否差异表达的问题,但它们没有明确解决一个基因何时差异表达的问题,尽管这些信息可能有助于深入了解调控程序的过程和因果结构。在本文中,我们提出了一种用于识别微阵列时间序列中差异基因表达区间的双样本检验。我们的方法基于高斯过程回归,可以处理任意数量的重复样本,并且对异常值具有鲁棒性。我们应用我们的算法,使用一个在24个观测时间点覆盖30336个基因探针的微阵列时间序列数据集,研究拟南芥基因对真菌病原体感染的反应。在分类实验中,我们的检验与现有方法相比具有优势,并提供了关于时间依赖性差异表达的更多见解。

相似文献

7
Hierarchical Probabilistic Interaction Modeling for Multiple Gene Expression Replicates.
IEEE/ACM Trans Comput Biol Bioinform. 2014 Mar-Apr;11(2):336-46. doi: 10.1109/TCBB.2014.2299804.
8
Characterization of WRKY co-regulatory networks in rice and Arabidopsis.
BMC Plant Biol. 2009 Sep 22;9:120. doi: 10.1186/1471-2229-9-120.
9

引用本文的文献

1
Biomarker identification by interpretable maximum mean discrepancy.
Bioinformatics. 2024 Jun 28;40(Suppl 1):i501-i510. doi: 10.1093/bioinformatics/btae251.
3
Principles and challenges of modeling temporal and spatial omics data.
Nat Methods. 2023 Oct;20(10):1462-1474. doi: 10.1038/s41592-023-01992-y. Epub 2023 Sep 14.
5
Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics.
Ann Appl Stat. 2022 Dec 1;16(4). doi: 10.1214/22-AOAS1603.
7
Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
Bioinformatics. 2021 Nov 5;37(21):3788-3795. doi: 10.1093/bioinformatics/btab486.
8
A Bayesian semi-parametric model for thermal proteome profiling.
Commun Biol. 2021 Jun 29;4(1):810. doi: 10.1038/s42003-021-02306-8.
9
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.
Genes (Basel). 2021 Feb 27;12(3):352. doi: 10.3390/genes12030352.
10
Emerging computational tools and models for studying gut microbiota composition and function.
Curr Opin Biotechnol. 2020 Dec;66:301-311. doi: 10.1016/j.copbio.2020.10.005. Epub 2020 Nov 25.

本文引用的文献

1
Gaussian process regression bootstrapping: exploring the effects of uncertainty in time course data.
Bioinformatics. 2009 May 15;25(10):1300-6. doi: 10.1093/bioinformatics/btp139. Epub 2009 Mar 16.
2
BATS: a Bayesian user-friendly software for analyzing time series microarray experiments.
BMC Bioinformatics. 2008 Oct 6;9:415. doi: 10.1186/1471-2105-9-415.
3
Gaussian process robust regression for noisy heart rate data.
IEEE Trans Biomed Eng. 2008 Sep;55(9):2143-51. doi: 10.1109/TBME.2008.923118.
4
Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities.
Bioinformatics. 2008 Aug 15;24(16):i70-5. doi: 10.1093/bioinformatics/btn278.
5
The Arabidopsis Information Resource (TAIR): gene structure and function annotation.
Nucleic Acids Res. 2008 Jan;36(Database issue):D1009-14. doi: 10.1093/nar/gkm965. Epub 2007 Nov 5.
6
A Bayesian approach to estimation and testing in time-course microarray experiments.
Stat Appl Genet Mol Biol. 2007;6:Article24. doi: 10.2202/1544-6115.1299. Epub 2007 Sep 16.
7
Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.
Curr Opin Plant Biol. 2006 Aug;9(4):436-42. doi: 10.1016/j.pbi.2006.05.014. Epub 2006 Jun 8.
8
maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments.
Bioinformatics. 2006 May 1;22(9):1096-102. doi: 10.1093/bioinformatics/btl056. Epub 2006 Feb 15.
9
Bayesian coclustering of Anopheles gene expression time series: study of immune defense response to multiple experimental challenges.
Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):16939-44. doi: 10.1073/pnas.0408393102. Epub 2005 Nov 15.
10
Significance analysis of time course microarray experiments.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42. doi: 10.1073/pnas.0504609102. Epub 2005 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验