文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

批量 RNA-Seq 时间序列数据的时间动态方法。

Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

机构信息

Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.

Department of Computer Science and Statistics, College of Natural Sciences, Jeju National University, Jeju City, Jeju Do 63243, Korea.

出版信息

Genes (Basel). 2021 Feb 27;12(3):352. doi: 10.3390/genes12030352.


DOI:10.3390/genes12030352
PMID:33673721
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7997275/
Abstract

Dynamic studies in time course experimental designs and clinical approaches have been widely used by the biomedical community. These applications are particularly relevant in stimuli-response models under environmental conditions, characterization of gradient biological processes in developmental biology, identification of therapeutic effects in clinical trials, disease progressive models, cell-cycle, and circadian periodicity. Despite their feasibility and popularity, sophisticated dynamic methods that are well validated in large-scale comparative studies, in terms of statistical and computational rigor, are less benchmarked, comparing to their static counterparts. To date, a number of novel methods in bulk RNA-Seq data have been developed for the various time-dependent stimuli, circadian rhythms, cell-lineage in differentiation, and disease progression. Here, we comprehensively review a key set of representative dynamic strategies and discuss current issues associated with the detection of dynamically changing genes. We also provide recommendations for future directions for studying non-periodical, periodical time course data, and meta-dynamic datasets.

摘要

动态研究在时间过程实验设计和临床方法中已经被生物医学界广泛应用。这些应用在环境条件下的刺激-反应模型、发育生物学中梯度生物过程的特征描述、临床试验中的治疗效果鉴定、疾病进展模型、细胞周期和昼夜节律周期性等方面特别相关。尽管它们具有可行性和普及性,但在大规模比较研究中,从统计和计算严谨性的角度来看,经过良好验证的复杂动态方法与静态方法相比,基准测试较少。迄今为止,已经为各种随时间变化的刺激、昼夜节律、分化中的细胞谱系和疾病进展开发了大量新的批量 RNA-Seq 数据方法。在这里,我们全面回顾了一组具有代表性的动态策略,并讨论了与检测动态变化基因相关的当前问题。我们还为研究非周期性、周期性时间过程数据和元动态数据集提供了未来方向的建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66da/7997275/17399dc9999d/genes-12-00352-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66da/7997275/17399dc9999d/genes-12-00352-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66da/7997275/17399dc9999d/genes-12-00352-g001.jpg

相似文献

[1]
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data.

Genes (Basel). 2021-2-27

[2]
Single-cell RNA-seq clustering: datasets, models, and algorithms.

RNA Biol. 2020-6

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.

RNA. 2020-6-12

[5]
Consensus clustering of single-cell RNA-seq data by enhancing network affinity.

Brief Bioinform. 2021-11-5

[6]
The future of Cochrane Neonatal.

Early Hum Dev. 2020-11

[7]
Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.

Brief Bioinform. 2021-7-20

[8]
NDRindex: a method for the quality assessment of single-cell RNA-Seq preprocessing data.

BMC Bioinformatics. 2020-12-16

[9]
SCMAG: A Semisupervised Single-Cell Clustering Method Based on Matrix Aggregation Graph Convolutional Neural Network.

Comput Math Methods Med. 2021

[10]
Goals and approaches for each processing step for single-cell RNA sequencing data.

Brief Bioinform. 2021-7-20

引用本文的文献

[1]
Temporal dynamics of gene and protein signatures following volumetric muscle loss.

Front Cell Dev Biol. 2025-7-3

[2]
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data.

Stats (Basel). 2025-3

[3]
Dynamics in zebrafish development define transcriptomic specificity after angiogenesis inhibitor exposure.

Arch Toxicol. 2025-4

[4]
Unveiling gene regulatory networks during cellular state transitions without linkage across time points.

Sci Rep. 2024-5-29

[5]
Circadian transcriptome processing and analysis: a workflow for muscle stem cells.

FEBS Open Bio. 2023-7

[6]
Time-Series Transcriptomic Analysis of Contrasting Rice Materials under Heat Stress Reveals a Faster Response in the Tolerant Cultivar.

Int J Mol Sci. 2023-5-28

[7]
Learning perturbation-inducible cell states from observability analysis of transcriptome dynamics.

Nat Commun. 2023-5-31

[8]
Transcriptomic thermal plasticity underlying gonadal development in a turtle with ZZ/ZW sex chromosomes despite canalized genotypic sex determination.

Ecol Evol. 2023-2-24

[9]
Toward a hypothesis-free understanding of how phosphorylation dynamically impacts protein turnover.

Proteomics. 2023-2

[10]
Prediction of Red Blood Cell Demand for Pediatric Patients Using a Time-Series Model: A Single-Center Study in China.

Front Med (Lausanne). 2022-5-19

本文引用的文献

[1]
PairGP: Gaussian process modeling of longitudinal data from paired multi-condition studies.

Comput Biol Med. 2022-4

[2]
TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data.

Nucleic Acids Res. 2021-7-2

[3]
A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data.

Brief Bioinform. 2021-5-20

[4]
Interpretation of deep learning in genomics and epigenomics.

Brief Bioinform. 2021-5-20

[5]
Causal network inference from gene transcriptional time-series response to glucocorticoids.

PLoS Comput Biol. 2021-1

[6]
Integration of single-cell multi-omics for gene regulatory network inference.

Comput Struct Biotechnol J. 2020-6-29

[7]
Dream: powerful differential expression analysis for repeated measures designs.

Bioinformatics. 2021-4-19

[8]
Gene regulatory network inference from sparsely sampled noisy data.

Nat Commun. 2020-7-13

[9]
rmRNAseq: differential expression analysis for repeated-measures RNA-seq data.

Bioinformatics. 2020-8-15

[10]
State-Transition Analysis of Time-Sequential Gene Expression Identifies Critical Points That Predict Development of Acute Myeloid Leukemia.

Cancer Res. 2020-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索