Suppr超能文献

缺硫对 T-DNA 突变体中天冬氨酸乙酰转移酶特异性缺失导致的半胱氨酸生物合成的影响。

Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase.

机构信息

Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

出版信息

Amino Acids. 2010 Oct;39(4):1029-42. doi: 10.1007/s00726-010-0580-9. Epub 2010 Apr 9.

Abstract

Sulfur plays a pivotal role in the cellular metabolism of many organisms. In plants, the uptake and assimilation of sulfate is strongly regulated at the transcriptional level. Regulatory factors are the demand of reduced sulfur in organic or non-organic form and the level of O-acetylserine (OAS), the carbon precursor for cysteine biosynthesis. In plants, cysteine is synthesized by action of the cysteine-synthase complex (CSC) containing serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL). Both enzymes are located in plastids, mitochondria and the cytosol. The function of the compartmentation of the CSC to regulate sulfate uptake and assimilation is still not clearly resolved. To address this question, we analyzed Arabidopsis thaliana mutants for the plastidic and cytosolic SAT isoenzymes under sulfur starvation conditions. In addition, subcellular metabolite analysis by non-aqueous fractionation revealed distinct changes in subcellular metabolite distribution upon short-term sulfur starvation. Metabolite and transcript analyses of SERAT1.1 and SERAT2.1 mutants [previously analyzed in Krueger et al. (Plant Cell Environ 32:349-367, 2009)] grown under sulfur starvation conditions indicate that both isoenzymes do not contribute directly to the transcriptional regulation of genes involved in sulfate uptake and assimilation. Here, we summarize the current knowledge about the regulation of cysteine biosynthesis and the contribution of the different compartments to this metabolic process. We relate hypotheses and views of the regulation of cysteine biosynthesis with our results of applying sulfur starvation to mutants impaired in compartment-specific cysteine biosynthetic enzymes.

摘要

硫在许多生物体的细胞代谢中起着关键作用。在植物中,硫酸盐的摄取和同化在转录水平上受到强烈调节。调节因子是还原态硫的需求,无论是有机形式还是非有机形式,以及 O-乙酰丝氨酸(OAS)的水平,OAS 是半胱氨酸生物合成的碳前体。在植物中,半胱氨酸是由包含丝氨酸乙酰转移酶(SAT)和 O-乙酰丝氨酸-(硫代)-裂解酶(OASTL)的半胱氨酸合成酶复合物(CSC)作用合成的。这两种酶都位于质体、线粒体和细胞质中。CSC 的区室化功能来调节硫酸盐的摄取和同化仍未得到明确解决。为了解决这个问题,我们在硫饥饿条件下分析了拟南芥突变体中质体和细胞质 SAT 同工酶。此外,通过非水部分分离进行的亚细胞代谢物分析揭示了短期硫饥饿时亚细胞代谢物分布的明显变化。SERAT1.1 和 SERAT2.1 突变体(以前在 Krueger 等人的研究中进行了分析,植物细胞环境 32:349-367,2009)的代谢物和转录分析表明,这两种同工酶都不会直接参与硫酸盐摄取和同化相关基因的转录调节。在这里,我们总结了关于半胱氨酸生物合成调节的当前知识以及不同隔室对半胱氨酸生物合成代谢过程的贡献。我们将半胱氨酸生物合成调节的假设和观点与我们在应用硫饥饿处理在特定隔室半胱氨酸生物合成酶中受损的突变体时的结果联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验