Suppr超能文献

变形链球菌真核型丝氨酸/苏氨酸蛋白激酶在与血链球菌种间相互作用中的作用。

Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis.

机构信息

College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

出版信息

Arch Oral Biol. 2010 May;55(5):385-90. doi: 10.1016/j.archoralbio.2010.03.012. Epub 2010 Apr 8.

Abstract

OBJECTIVE

Interspecies interactions of oral streptococci involve the production and excretion of antimicrobial compounds to compete successfully during colonization. Bacteriocin production by Streptococcus mutans and hydrogen peroxide (H2O2) production by Streptococcus sanguinis have been demonstrated as crucial for the clinical relevant antagonism between both species. A potential target of H2O2 is the cell-envelop of S. mutans. In the present study, the role of cell-envelop associated eukaryotic serine/threonine protein kinase (STPK) in S. mutans during interspecies competition has been investigated.

DESIGN

Allelic replacement via homologous recombination of the STPK encoding gene with a kanamycin resistant determinant has been constructed. The mutant has been screened for the susceptibility towards cell-envelope stress. A previously developed spotting assay was used to simulate interspecies competition.

RESULTS

The STPK(-) mutant showed an increased susceptibility towards envelop stress caused by H2O2 and was significantly more inhibited during interspecies competition assays.

CONCLUSIONS

S. mutans is able to sense antimicrobial compounds excreted by competing species and can potentially adjust the cell-envelop towards an increased resistance.

摘要

目的

口腔链球菌之间的种间相互作用涉及抗菌化合物的产生和排泄,以在定植过程中成功竞争。已证明变异链球菌产生细菌素和血链球菌产生过氧化氢 (H2O2) 对于两种细菌之间的临床相关拮抗作用至关重要。H2O2 的一个潜在靶标是 S. mutans 的细胞包膜。在本研究中,研究了种间竞争过程中 S. mutans 中与细胞包膜相关的真核丝氨酸/苏氨酸蛋白激酶 (STPK) 的作用。通过同源重组用卡那霉素抗性决定因素替换 STPK 编码基因已构建。筛选突变体对细胞包膜应激的敏感性。先前开发的点样测定法用于模拟种间竞争。结果:STPK(-)突变体对 H2O2 引起的包膜应激的敏感性增加,并且在种间竞争测定中受到显著抑制。结论:S. mutans 能够感知由竞争物种分泌的抗菌化合物,并能够潜在地调整细胞包膜以增加抗性。

相似文献

1
Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis.
Arch Oral Biol. 2010 May;55(5):385-90. doi: 10.1016/j.archoralbio.2010.03.012. Epub 2010 Apr 8.
3
Involvement of gshAB in the interspecies competition within oral biofilm.
J Dent Res. 2013 Sep;92(9):819-24. doi: 10.1177/0022034513498598. Epub 2013 Jul 19.
4
Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide.
J Bacteriol. 2024 Sep 19;206(9):e0022724. doi: 10.1128/jb.00227-24. Epub 2024 Aug 22.
5
In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm.
Mol Oral Microbiol. 2018 Apr;33(2):168-180. doi: 10.1111/omi.12209. Epub 2018 Feb 1.
6
Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis.
Int J Oral Sci. 2011 Apr;3(2):82-9. doi: 10.4248/IJOS11030.
7
Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm.
J Bacteriol. 2005 Nov;187(21):7193-203. doi: 10.1128/JB.187.21.7193-7203.2005.
8
dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2.
Appl Environ Microbiol. 2013 Mar;79(5):1436-43. doi: 10.1128/AEM.03306-12. Epub 2012 Dec 21.
9
A strain of inhibits biofilm formation of caries pathogens via abundant hydrogen peroxide production.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0219224. doi: 10.1128/aem.02192-24. Epub 2025 Feb 25.

引用本文的文献

1
Post-translational modifications via serine/threonine phosphorylation and GpsB in .
bioRxiv. 2025 Jul 25:2025.07.25.666849. doi: 10.1101/2025.07.25.666849.
2
Potential Effect of Giant Freshwater Prawn Shell Nano Chitosan in Inhibiting the Development of and Biofilm .
Int J Dent. 2023 Feb 10;2023:8890750. doi: 10.1155/2023/8890750. eCollection 2023.
3
Fungi-A Component of the Oral Microbiome Involved in Periodontal Diseases.
Adv Exp Med Biol. 2022;1373:113-138. doi: 10.1007/978-3-030-96881-6_6.
4
Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction.
Front Cell Infect Microbiol. 2022 Jan 11;11:814659. doi: 10.3389/fcimb.2021.814659. eCollection 2021.
5
Post-translational Modifications in Oral Bacteria and Their Functional Impact.
Front Microbiol. 2021 Dec 2;12:784923. doi: 10.3389/fmicb.2021.784923. eCollection 2021.
6
Regulatory circuits controlling Spx levels in Streptococcus mutans.
Mol Microbiol. 2020 Jul;114(1):109-126. doi: 10.1111/mmi.14499. Epub 2020 Apr 8.
7
Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne .
Front Microbiol. 2019 May 1;10:877. doi: 10.3389/fmicb.2019.00877. eCollection 2019.
8
Two-component signal transduction systems in oral bacteria.
J Oral Microbiol. 2017 Nov 27;9(1):1400858. doi: 10.1080/20002297.2017.1400858. eCollection 2017.
9
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms.
Infect Immun. 2014 Dec;82(12):4941-51. doi: 10.1128/IAI.01850-14. Epub 2014 Sep 2.
10
Intercellular communications in multispecies oral microbial communities.
Front Microbiol. 2014 Jul 1;5:328. doi: 10.3389/fmicb.2014.00328. eCollection 2014.

本文引用的文献

1
Influence of a model human defensive peroxidase system on oral streptococcal antagonism.
Microbiology (Reading). 2009 Nov;155(Pt 11):3691-3700. doi: 10.1099/mic.0.031310-0. Epub 2009 Aug 14.
6
Elucidation of the antimicrobial mechanism of mutacin 1140.
Biochemistry. 2008 Mar 11;47(10):3308-14. doi: 10.1021/bi701262z. Epub 2008 Feb 12.
7
Cell envelope stress response in Gram-positive bacteria.
FEMS Microbiol Rev. 2008 Jan;32(1):107-46. doi: 10.1111/j.1574-6976.2007.00091.x.
8
9
A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3508-13. doi: 10.1073/pnas.0608742104. Epub 2007 Feb 20.
10
Genome of the opportunistic pathogen Streptococcus sanguinis.
J Bacteriol. 2007 Apr;189(8):3166-75. doi: 10.1128/JB.01808-06. Epub 2007 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验