Chudal Sangam, Dover Courtney, Haydt Tiffany, King Shawn M, Shields Robert C
Department of Biological Sciences, Beck College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas, USA.
Department of Asian and Middle Eastern Studies, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
bioRxiv. 2025 Jul 25:2025.07.25.666849. doi: 10.1101/2025.07.25.666849.
Post-translational modifications (PTMs), such as protein phosphorylation, are critical regulators of bacterial physiology. Here, we present the first comprehensive phosphoproteomic analysis of , revealing extensive -phosphorylation under non-stressed conditions. Using tandem mass tag (TMT)-based mass spectrometry and phosphopeptide enrichment, we identified 231 high-confidence phosphosites on 131 proteins, representing approximately 6.7% of the detected proteome. These phosphorylated proteins were enriched in pathways related to translation, carbohydrate metabolism, and the cell cycle, suggesting a broad role for -phosphorylation in core cellular functions. To define the functional roles of the sole serine/threonine protein kinase (PknB) and phosphatase (PppL) encoded by , we analyzed phosphoproteomic and proteomic changes in Δ and Δ mutants. These mutants exhibited widespread alterations in protein abundance and phosphorylation, revealing overlapping but distinct sets of putative kinase and phosphatase substrates, including DivIVA, MapZ, MltG, and ribosomal proteins. Notably, we discovered that repression of , a predicted PknB binding partner, causes lethal defects that can be rescued by a suppressor mutation (G98R) in . This mutation restores phosphorylation of DivIVA, suggesting that GpsB regulates the PknB/PppL signaling axis to maintain appropriate phosphorylation of essential targets. This work highlights conserved and unique features of bacterial phosphosignaling and provides a foundation for future studies on PTM-mediated regulation in .
翻译后修饰(PTMs),如蛋白质磷酸化,是细菌生理学的关键调节因子。在此,我们展示了对[具体研究对象]的首次全面磷酸化蛋白质组分析,揭示了在非应激条件下广泛的[具体修饰类型]磷酸化。使用基于串联质量标签(TMT)的质谱和磷酸肽富集技术,我们在131种蛋白质上鉴定出231个高可信度的磷酸化位点,约占检测到的蛋白质组的6.7%。这些磷酸化蛋白质在与翻译、碳水化合物代谢和细胞周期相关的途径中富集,表明[具体修饰类型]磷酸化在核心细胞功能中具有广泛作用。为了确定由[具体基因]编码的唯一丝氨酸/苏氨酸蛋白激酶(PknB)和磷酸酶(PppL)的功能作用,我们分析了Δ[具体基因]和Δ[具体基因]突变体中的磷酸化蛋白质组和蛋白质组变化。这些突变体在蛋白质丰度和磷酸化方面表现出广泛的改变,揭示了重叠但不同的假定激酶和磷酸酶底物集,包括DivIVA、MapZ、MltG和核糖体蛋白。值得注意的是,我们发现预测的PknB结合伙伴[具体基因]的抑制会导致致命缺陷,而[具体基因]中的一个抑制突变(G98R)可以挽救这些缺陷。该突变恢复了DivIVA的磷酸化,表明GpsB调节PknB/PppL信号轴以维持必需靶标的适当磷酸化。这项工作突出了细菌磷酸信号的保守和独特特征,并为未来关于[具体研究对象]中翻译后修饰介导的调控研究奠定了基础。